Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 5(10): e02755, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31720481

RESUMO

In this work, a novel biosensor was fabricated for detection of DNA damage induced by 4-nonylphenol (NP) and also determination of NP. To achieve this goal, a glassy carbon electrode (GCE) was modified with chitosan (Chit), gold nanoparticles (Au NPs) and DNA-multiwalled carbon nanotubes (DNA-MWCNTs). Then, the DNA-MWCNTs/Au NPs/Chit/GCE was incubated with methylene blue (MB) to obtain MB-DNA-MWCNTs/Au NPs/Chit/GCE in which MB was used as the redox indicator. The modifications applied to the GCE were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopic (EDS) and theoretical evidence. MB is a derivative of anthraquinone which can intercalate into double helix structure of DNA. By treating MB-DNA-MWCNTs/Au NPs/Chit/GCE with NP, a higher R ct was observed because the insertion of the NP may result in a more negative charge environment on the DNA surface which hinders accessibility of [Fe(CN)6]3-/4- anion to the electrode surface. Change in the EIS response of the biosensor in the presence of NP was used to develop a novel system for monitoring the DNA damage induced by NP. The EIS technique was also used to develop a sensitive electroanalytical method for determination of NP.

2.
Mater Sci Eng C Mater Biol Appl ; 102: 653-660, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31147037

RESUMO

This paper reports an aptamer-based green approach for the electrochemical evaluation of tyrosinamide (Tyr-NH2). In this regard, at the first step, an aqueous synthetic strategy for preparing N-acetyl-l-cysteine (NAC)-capped Ag-In-S (AIS) quantum dots (QDs) with bright yellow/orange emission was developed. The conjugation of AIS QDs to NAC-biomolecules provides opportunities for using them as luminescent contrast agents for living cell tracking and labeling or sensing studies. In the next step, the design stage of the aptasensor, the glassy carbon electrode (GCE) was modified with the AIS QDs and then the Tyr-NH2 special aptamer, which has an amine group at its end, interacts with silver and indium ions at the surface of the AIS QDs and through the formation of covalent bonding of AgN and InN, attaches to the GCE surface modified with the AIS QDs. In this approach, for the first time, NAC-capped AIS QDs have been used to modify the electrode surface in the aptamer-based electrochemical sensor. The response changes of the [Fe(CN)6]4-/3- as redox probe, during the modification of GCE surface, the fabrication and assessment of proposed aptasensing, using the cyclic voltammetry, differential pulse voltammetry and electrochemical impedance spectroscopy were recorded. The designed aptasensor for the Tyr-NH2 evaluation showed good linearity from 0.01 to 2.81 nM and 2.81-10.81 nM, and low detection limit of 3.34 pM. The obtained results of the stability, reproducibility and selectivity investigations implying that the reported aptasensor as the first aptamer-based electrochemical assay for Tyr-NH2, can be reliable for the determination of Tyr-NH2 in serum samples.


Assuntos
Acetilcisteína/química , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Carbono/química , Técnicas Eletroquímicas/métodos , Vidro/química , Pontos Quânticos/química , Tirosina/análogos & derivados , Espectroscopia Dielétrica , Eletrodos , Humanos , Índio/química , Pontos Quânticos/ultraestrutura , Reprodutibilidade dos Testes , Prata/química , Enxofre/química , Fatores de Tempo , Tirosina/sangue
3.
Mikrochim Acta ; 186(2): 115, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30649623

RESUMO

An electrochemical method is described for the determination of streptomycin (STR). It is making use of a gold electrode coated with a thin mesoporous silica film (MSF). In addition, silver nanoparticles were coated on the MSF to increase the surface area, to bind a large amount of aptamer (Apt), and to improve the electrical conductivity. In the presence of STR, it will bind to the Apt and hinder the diffusion of the redox probe hexacyanoferrate through the nanochannels of the mesoporous film. The aptasensor, best operated at a working potential of 0.22 V (vs. Ag/AgCl) has a linear response in the 1 fg.mL-1 to 6.2 ng.mL-1 STR concentration range. The detection limit is 0.33 fg.mL-1. The assay was successfully validated by analyzing spiked samples of milk and blood serum. Graphical abstract Voltammetric assay of streptomycin (STR) by using a Fe(CN)63-/4- probe. The aptamer was immobilized on a gold electrode modified with a mesoporous silica thin film (MSF) that was functionalized with (3-aminopropyl) triethoxysilane (APTES) and silver nanoparticles (AgNP). Incubation with STR leads to a decrease of the current.


Assuntos
Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Técnicas Biossensoriais/instrumentação , Ouro/química , Nanopartículas Metálicas/química , Dióxido de Silício/química , Estreptomicina/análise , Aptâmeros de Nucleotídeos/genética , Sequência de Bases , Eletroquímica , Eletrodos , Humanos , Porosidade , Estreptomicina/sangue , Estreptomicina/metabolismo
4.
Bioelectrochemistry ; 120: 43-48, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29172140

RESUMO

In the present study, we report a facile approach to employ gold nanoparticle (AuNPs) and thiol graphene quantum dots (GQD-SH) as the nanomaterial for ultrasensitive detection of streptomycin (STR). Based on this strategy, a GQD-SH was immobilized onto the surface of a glassy carbon electrode (GCE). AuNPs have been immobilized on SH groups of GQDs through bonding formation of AuS and Apt have been loaded on the electrode surface through the interaction between thiol group of aptamer. By incubating STR as a target onto the surface of the prepared Apt/AuNPs/GQD-SH/GCE as a proposed nanoaptasensor, the Apt/STR complex was formed and the changes of the electrochemical signal were evaluated with the EIS technique. The proposed nanoaptasensor showed wide linear range from 0.1 to 700pgml-1. Finally, the proposed nanoaptasensor was successfully applied for the determination of STR in real samples and satisfactory results were obtained.


Assuntos
Antibacterianos/sangue , Aptâmeros de Nucleotídeos/química , Técnicas Eletroquímicas/métodos , Ouro/química , Grafite/química , Nanopartículas Metálicas/química , Pontos Quânticos/química , Estreptomicina/sangue , Antibacterianos/análise , Técnicas Biossensoriais/métodos , Humanos , Limite de Detecção , Estreptomicina/análise , Compostos de Sulfidrila/química
5.
Anal Biochem ; 534: 64-69, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28728900

RESUMO

In the present study, by using the aptamer proximity binding assay strategy, a novel electrochemical aptasensor is described for ultrasensitive detection of hepatitis C virus (HCV) core antigen. The immobilization surface is prepared by the modification of a glassy carbon electrode (GCE) with a graphene quantum dots (GQD). GQD were introduced as a novel and suitable substrate for aptamers through π-π stacking interactions, the richness of hydrophilic edges as well as hydrophobic plane in GQD which enhances the aptamer absorption on the electrode surface. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were performed at each stage of the chemical modification process to confirm the resulting surface changes. EIS technique was used as an efficient alternative detection system for HCV core antigen measurement with detection limit 3.3 pg mL-1 and two linear concentration range 10-70 pg mL-1 and 70-400 pg mL-1. Moreover, the fabricated aptasensor could accurately detect HCV core antigen concentration in human serum samples. Such an aptasensor opens a rapid, selective and sensitive route for HCV core antigen detection and provides a promising strategy for potential applications in clinical diagnostics.


Assuntos
Antígenos Virais/sangue , Aptâmeros de Nucleotídeos/química , Grafite/química , Hepacivirus/isolamento & purificação , Nanocompostos/química , Pontos Quânticos , Eletrodos , Humanos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...