Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36232617

RESUMO

Heart failure (HF) carries the highest mortality in the western world and ß-blockers [ß-adrenergic receptor (AR) antagonists] are part of the cornerstone pharmacotherapy for post-myocardial infarction (MI) chronic HF. Cardiac ß1AR-activated ßarrestin2, a G protein-coupled receptor (GPCR) adapter protein, promotes Sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)2a SUMO (small ubiquitin-like modifier)-ylation and activity, thereby directly increasing cardiac contractility. Given that certain ß-blockers, such as carvedilol and metoprolol, can activate ßarrestins and/or SERCA2a in the heart, we investigated the effects of these two agents on cardiac ßarrestin2-dependent SERCA2a SUMOylation and activity. We found that carvedilol, but not metoprolol, acutely induces ßarrestin2 interaction with SERCA2a in H9c2 cardiomyocytes and in neonatal rat ventricular myocytes (NRVMs), resulting in enhanced SERCA2a SUMOylation. However, this translates into enhanced SERCA2a activity only in the presence of the ß2AR-selective inverse agonist ICI 118,551 (ICI), indicating an opposing effect of carvedilol-occupied ß2AR subtype on carvedilol-occupied ß1AR-stimulated, ßarrestin2-dependent SERCA2a activation. In addition, the amplitude of fractional shortening of NRVMs, transfected to overexpress ßarrestin2, is acutely enhanced by carvedilol, again in the presence of ICI only. In contrast, metoprolol was without effect on NRVMs' shortening amplitude irrespective of ICI co-treatment. Importantly, the pro-contractile effect of carvedilol was also observed in human induced pluripotent stem cell (hIPSC)-derived cardiac myocytes (CMs) overexpressing ßarrestin2, and, in fact, it was present even without concomitant ICI treatment of human CMs. Metoprolol with or without concomitant ICI did not affect contractility of human CMs, either. In conclusion, carvedilol, but not metoprolol, stimulates ßarrestin2-mediated SERCA2a SUMOylation and activity through the ß1AR in cardiac myocytes, translating into direct positive inotropy. However, this unique ßarrestin2-dependent pro-contractile effect of carvedilol may be opposed or masked by carvedilol-bound ß2AR subtype signaling.


Assuntos
Insuficiência Cardíaca , Células-Tronco Pluripotentes Induzidas , Adenosina Trifosfatases/metabolismo , Antagonistas Adrenérgicos beta/farmacologia , Animais , Carvedilol/farmacologia , Insuficiência Cardíaca/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Metoprolol/metabolismo , Metoprolol/farmacologia , Metoprolol/uso terapêutico , Miócitos Cardíacos/metabolismo , Ratos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Ubiquitinas/metabolismo , beta-Arrestina 2/metabolismo
3.
World J Cardiol ; 12(5): 192-202, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32547713

RESUMO

BACKGROUND: Tobacco-related products, containing the highly addictive nicotine together with numerous other harmful toxicants and carcinogens, have been clearly associated with coronary artery disease, heart failure, stroke, and other heart diseases. Among the mechanisms by which nicotine contributes to heart disease is elevation of the renin-angiotensin-aldosterone system (RAAS) activity. Nicotine, and its major metabolite in humans cotinine, have been reported to induce RAAS activation, resulting in aldosterone elevation in smokers. Aldosterone has various direct and indirect adverse cardiac effects. It is produced by the adrenal cortex in response to angiotensin II (AngII) activating AngII type 1 receptors. RAAS activity increases in chronic smokers, causing raised aldosterone levels (nicotine exposure causes the same in rats). AngII receptors exert their cellular effects via either G proteins or the two ßarrestins (ßarrestin1 and-2). AIM: Since adrenal ßarrestin1 is essential for adrenal aldosterone production and nicotine/cotinine elevate circulating aldosterone levels in humans, we hypothesized that nicotine activates adrenal ßarrestin1, which contributes to RAAS activation and heart disease development. METHODS: We studied human adrenocortical zona glomerulosa H295R cells and found that nicotine and cotinine upregulate ßarrestin1 mRNA and protein levels, thereby enhancing AngII-dependent aldosterone synthesis and secretion. RESULTS: In contrast, siRNA-mediated ßarrestin1 knockdown reversed the effects of nicotine on AngII-induced aldosterone production in H295R cells. Importantly, nicotine promotes hyperaldosteronism via adrenal ßarrestin1, thereby precipitating cardiac dysfunction, also in vivo, since nicotine-exposed experimental rats with adrenal-specific ßarrestin1 knockdown display lower circulating aldosterone levels and better cardiac function than nicotine-exposed control animals with normal adrenal ßarrestin1 expression. CONCLUSION: Adrenal ßarrestin1 upregulation is one of the mechanisms by which tobacco compounds, like nicotine, promote cardio-toxic hyperaldosteronism in vitro and in vivo. Thus, adrenal ßarrestin1 represents a novel therapeutic target for tobacco-related heart disease prevention or mitigation.

4.
Int J Mol Sci ; 21(8)2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32326036

RESUMO

Aldosterone (Aldo), when overproduced, is a cardiotoxic hormone underlying heart failure and hypertension. Aldo exerts damaging effects via the mineralocorticoid receptor (MR) but also activates the antiapoptotic G protein-coupled estrogen receptor (GPER) in the heart. G protein-coupled receptor (GPCR)-kinase (GRK)-2 and -5 are the most abundant cardiac GRKs and phosphorylate GPCRs as well as non-GPCR substrates. Herein, we investigated whether they phosphorylate and regulate cardiac MR and GPER. To this end, we used the cardiomyocyte cell line H9c2 and adult rat ventricular myocytes (ARVMs), in which we manipulated GRK5 protein levels via clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 and GRK2 activity via pharmacological inhibition. We report that GRK5 phosphorylates and inhibits the cardiac MR whereas GRK2 phosphorylates and desensitizes GPER. In H9c2 cardiomyocytes, GRK5 interacts with and phosphorylates the MR upon ß2-adrenergic receptor (AR) activation. In contrast, GRK2 opposes agonist-activated GPER signaling. Importantly, GRK5-dependent MR phosphorylation of the MR inhibits transcriptional activity, since aldosterone-induced gene transcription is markedly suppressed in GRK5-overexpressing cardiomyocytes. Conversely, GRK5 gene deletion augments cardiac MR transcriptional activity. ß2AR-stimulated GRK5 phosphorylates and inhibits the MR also in ARVMs. Additionally, GRK5 is necessary for the protective effects of the MR antagonist drug eplerenone against Aldo-induced apoptosis and oxidative stress in ARVMs. In conclusion, GRK5 blocks the cardiotoxic MR-dependent effects of Aldo in the heart, whereas GRK2 may hinder beneficial effects of Aldo through GPER. Thus, cardiac GRK5 stimulation (e.g., via ß2AR activation) might be of therapeutic value for heart disease treatment via boosting the efficacy of MR antagonists against Aldo-mediated cardiac injury.


Assuntos
Aldosterona/metabolismo , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Quinase 5 de Receptor Acoplado a Proteína G/metabolismo , Miócitos Cardíacos/metabolismo , Receptores de Mineralocorticoides/metabolismo , Transdução de Sinais , Animais , Apoptose , Linhagem Celular , Quinase 2 de Receptor Acoplado a Proteína G/genética , Quinase 5 de Receptor Acoplado a Proteína G/genética , Modelos Biológicos , Estresse Oxidativo , Fosforilação , Ligação Proteica , Ratos , Receptores Adrenérgicos beta 2/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ativação Transcricional
5.
Int J Mol Sci ; 21(2)2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31963151

RESUMO

Aldosterone is produced by adrenocortical zona glomerulosa (AZG) cells in response to angiotensin II (AngII) acting through its type I receptors (AT1Rs). AT1R is a G protein-coupled receptor (GPCR) that induces aldosterone via both G proteins and the adapter protein ßarrestin1, which binds the receptor following its phosphorylation by GPCR-kinases (GRKs) to initiate G protein-independent signaling. ß-adrenergic receptors (ARs) also induce aldosterone production in AZG cells. Herein, we investigated whether GRK2 or GRK5, the two major adrenal GRKs, is involved in the catecholaminergic regulation of AngII-dependent aldosterone production. In human AZG (H295R) cells in vitro, the ßAR agonist isoproterenol significantly augmented both AngII-dependent aldosterone secretion and synthesis, as measured by the steroidogenic acute regulatory (StAR) protein and CYP11B2 (aldosterone synthase) mRNA inductions. Importantly, GRK2, but not GRK5, was indispensable for the ßAR-mediated enhancement of aldosterone in response to AngII. Specifically, GRK2 inhibition with Cmpd101 abolished isoproterenol's effects on AngII-induced aldosterone synthesis/secretion, whereas the GRK5 knockout via CRISPR/Cas9 had no effect. It is worth noting that these findings were confirmed in vivo, since rats overexpressing GRK2, but not GRK5, in their adrenals had elevated circulating aldosterone levels compared to the control animals. However, treatment with the ß-blocker propranolol prevented hyperaldosteronism in the adrenal GRK2-overexpressing rats. In conclusion, GRK2 mediates a ßAR-AT1R signaling crosstalk in the adrenal cortex leading to elevated aldosterone production. This suggests that adrenal GRK2 may be a molecular link connecting the sympathetic nervous and renin-angiotensin systems at the level of the adrenal cortex and that its inhibition might be therapeutically advantageous in hyperaldosteronism-related conditions.


Assuntos
Aldosterona/metabolismo , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores Adrenérgicos beta/metabolismo , Zona Glomerulosa/citologia , Zona Glomerulosa/metabolismo , Angiotensina II/genética , Angiotensina II/metabolismo , Western Blotting , Linhagem Celular , Quinase 2 de Receptor Acoplado a Proteína G/genética , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Receptor Tipo 1 de Angiotensina/genética , Receptores Adrenérgicos beta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...