Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 16(11): 18497-18502, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36326197

RESUMO

It has been proposed that metal-semiconductor-metal (MSM) structures can be used to tune the absorptivity of a metasurface at infrared wavelengths. Indium arsenide (InAs) is a low-band-gap, high-electron-mobility semiconductor that may enable rapid index tuning for dynamic control over the infrared spectrum. However, direct growth of III-V thin films on top of metals has typically resulted in small-grain, polycrystalline materials that are not amenable to high-quality devices. Previously, epitaxial wafers were used for this purpose. However, the epitaxial constraints required that InAs be used for both the tuning layer and the bottom "metallic" layer, limiting the range of accessible designs. In this work, we show a demonstration of direct growth of single-crystalline InAs on metal to build tunable absorbers/emitters in the infrared regime. The growth was carried out at a temperature of 300 °C by the low temperature templated liquid phase (LT-TLP) method. The size of InAs single-crystalline mesas is ∼2500 µm2, enabling the desired device sizes. The proposed growth and device enable scalable and tunable infrared devices for various thermal-photonic applications.

2.
Sci Rep ; 10(1): 20304, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33219278

RESUMO

Spectrally selective solar absorbers (SSAs), which harvest heat from sunlight, are the key to concentrated solar thermal systems. An ideal SSA must have an absorptivity of unity in the solar irradiance wavelength region (0.3-2.5 [Formula: see text]m), and its infrared thermal emissivity must be zero to depress spontaneous blackbody irradiation (2.5-25 [Formula: see text]m). Current SSA designs which utilize photonic crystals, metamaterials, or cermets are either cost-inefficient due to the complexity of the required nanofabrication methods, or have limited applicability due to poor thermal stability at high temperatures. We conceptually present blackbody-cavity solar absorber designs with nearly ideal spectrally selective properties, capable of being manufactured at scale. The theoretical analyses show that the unity solar absorptivity of the blackbody cavity and nearly zero infrared emissivity of the SSA's outer surface allow for a stagnation temperature of 880 [Formula: see text]C under 10 suns. The performance surpasses state-of-the-art SSAs manufactured using nanofabrication methods. This design relies only on traditional fabrication methods, such as machining, casting, and polishing. This makes it suitable for large-scale industrial applications, and the "blackbody cavity" feature enables easy integration with existing concentrated solar thermal systems using the parabolic reflector and Fresnel lens as optical concentrators.

3.
Sci Rep ; 9(1): 19317, 2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31848366

RESUMO

Photon-to-cooling phenomenon relies on the atmospheric transparency window to dissipate heat from the earth into outer space, which is an energy-saving cooling technique. This work demonstrates a highly effective aluminized Polymethylpentene (PMP) thin-film thermal structure. The emissivity of aluminized PMP thin films matches well to the atmospheric transparency window so as to minimize parasitic heat losses. This photon-to-cooling structure yields a temperature drop of 8.5 K in comparison to the ambient temperature and a corresponding radiative cooling power of 193 W/m2 during a one-day cycle. The easy-to-manufacture feature of an aluminized PMP thin film makes it a practically scalable radiative cooling method.

4.
Opt Express ; 27(20): A1591-A1600, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31684563

RESUMO

Microscopic thin film doped with different species of nanoparticles displays a unique wavelength selectivity in the context of micro/nanoscale radiative heat transfer. We propose a methodology to shift, broaden, and suppress the thermal radiative selectivity in the desired wavelength ranges. Measured transmittance spectra of potassium bromide pellet doped with a single species of nanoparticles are compared with the theoretical prediction using refractive indices that are extracted by refitting transmittance spectra curve according to the Lorentz-Drude model. For a media doped with more than two species of nanoparticles, a successive effective dielectric function using the refitted complex refractive indices and Maxwell Garnett theory is used to evaluate the thermal radiative selectivity of the composites. It has been confirmed theoretically and experimentally that the wavelength selectivity in the transmittance spectra can be influenced by choosing proper species of materials and varying volume fractions of multiple nanoparticles. This work has shed light on the design and fabrication of novel composites doped with multiple particles for applications such as thermophotovoltaics, radiative cooling, and biosensing.

5.
Opt Express ; 27(4): A148-A157, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30876056

RESUMO

This work investigates experimentally the near-infrared optical properties of SiO2 thin film embedded with tungsten (W) nanoparticles at varying volume fractions. The samples are prepared by using the technique of magnetron sputtering. The formation and distribution of W nanoparticles are characterized using transmission electron microscopy, and the volume fraction of W nanoparticles is validated by Auger electron spectroscopy. Near- and mid-infrared diffuse reflectance measurements are conducted using Fourier transform infrared spectroscopy. The samples exhibit wavelength selective optical response in the near-infrared region and are suitable for applications involving selective thermal emitters/absorbers. Measured reflectance data is utilized to estimate the effective dielectric function of the nano-composites. Calculated reflectance spectra in different samples are compared to the measured spectra using the experimentally measured dielectric function of these samples in the near-infrared region. Reflectance spectra after thermal annealing at different temperature are compared to show how the thermal treatment affects the optical properties of samples. Optimized structures are proposed for thermal emitters and absorbers with different volume fractions of W nanoparticles.

6.
J Photonics Energy ; 9(3)2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34055201

RESUMO

We analyze a near-field thermoradiative device that consists of an indium arsenide-based photodiode under negative illumination. We analyze a possible enhancement of conversion efficiency by use of hyperbolic metamaterial (HMM) in place of bulk metallic heat sink. A stack of alternating thin-films of metal [zirconium carbide (ZrC)] and dielectric [silicon dioxide (SiO2)] is chosen to be the HMM under investigation. The presence of hyperbolic modes creates additional channels of near-field radiative transfer. An increased power density is predicted without a compromise in system efficiency.

7.
J Photonics Energy ; 9(3)2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34084268

RESUMO

Wavelength-selective thermal devices have great applications in concentrating solar power systems, high-temperature thermoelectric systems, and solar thermophotovoltaics (STPVs). Lack of high-temperature stability and spectrally selective emissivity in different wavelength regions limits their efficiency. We propose a one-dimensional HfO2/Al2O3-W nanocomposites/W/Al2O3/W multilayered photonic structure as potential wavelength selective thermal devices, and theoretically investigate the emission properties of the proposed Mie-resonance metamaterials from visible (VIS) to midinfrared (MIR) region. HfO2 thin layer is introduced to serve as an antireflection coating film and W layer acts as an IR reflection layer that enhances the absorptivity/emissivity in VIS and near-infrared (NIR) region while reducing the MIR emission simultaneously. Effects of geometric parameters are discussed, such as different radii and volume fractions of W nanoparticles, the thickness of Al2O3-W nanocomposites, and HfO2 thin film. The proposed thermal absorber and emitter exhibit nearly unity absorptance in both VIS and NIR regions, while the emittance approaches zero in the MIR region. The selective absorption/emission window is tunable by varying geometric parameters. The proposed solar thermal devices have great potentials in engineering applications such as STPVs and solar thermoelectric generator due to flexibility of geometric parameters and ease of fabrication.

8.
Appl Phys Lett ; 112(24): 241104, 2018 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-29937547

RESUMO

In this theoretical study, we present a near-field thermal modulator that exhibits change in radiative heat transfer when subjected to mechanical stress/strain. The device has two terminals at different temperatures separated by vacuum: one fixed and one stretchable. The stretchable side contains one-dimensional grating. When subjected to mechanical strain, the effective optical properties of the stretchable side are affected upon deformation of the grating. This results in modulation of surface waves across the interfaces influencing near-field radiative heat transfer. We show that for a separation of 100 nm, it is possible to achieve 25% change in radiative heat transfer for a strain of 10%.

9.
Materials (Basel) ; 11(5)2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-29786650

RESUMO

Radiative thermal transport of metamaterials has begun to play a significant role in thermal science and has great engineering applications. When the key features of structures become comparable to the thermal wavelength at a particular temperature, a narrowband or wideband of wavelengths can be created or shifted in both the emission and reflection spectrum of nanoscale metamaterials. Due to the near-field effect, the phenomena of radiative wavelength selectivity become significant. These effects show strong promise for applications in thermophotovoltaic energy harvesting, nanoscale biosensing, and increased energy efficiency through radiative cooling in the near future. This review paper summarizes the recent progress and outlook of both near-field and far-field radiative heat transfer, different design structures of metamaterials, applications of unique thermal and optical properties, and focuses especially on exploration of the tunable radiative wavelength selectivity of nano-metamaterials.

10.
Opt Express ; 26(2): A209-A218, 2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29401930

RESUMO

We theoretically analyze two near-field thermal rectification devices: a radiative thermal diode and a thermal transistor that utilize a phase change material to achieve dynamic control over heat flow by exploiting metal-insulator transition of VO2 near 341 K. The thermal analogue of electronic diode allows high heat flow in one direction while it restricts the heat flow when the polarity of temperature gradient is reversed. We show that with the introduction of 1-D rectangular grating, thermal rectification is dramatically enhanced in the near-field due to reduced tunneling of surface waves across the interfaces for negative polarity. The radiative thermal transistor also works around phase transition temperature of VO2 and controls heat flow. We demonstrate a transistor-like behavior wherein heat flow across the source and the drain can be greatly varied by making a small change in gate temperature.

11.
Opt Mater Express ; 8(7): 2017-2025, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32269865

RESUMO

We report the optical properties of SU-8 in the mid-infrared (mid-IR) region before and after UV treatment. Samples consisted of SU-8 films of thickness ranging from 10 um to 157 um deposited on gold coated silicon substrates and were prepared using spin coating. Mid-IR diffuse reflectance measurements were conducted using Fourier transform infrared spectroscopy. Spectra measurements imply a change in optical properties of SU-8 upon exposure to UV and heat treatment. A gradual change in optical properties is seen after each step of UV treatment and the baking process. Reflectance spectra of thin-films were also observed to be thickness dependent. We calculate the dielectric function of SU-8 in the range 2 um to 15 um using the reflectance spectra of the samples.

12.
J Therm Sci Eng Appl ; 10(1): 0110041-110044, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29051797

RESUMO

We theoretically and numerically demonstrate optimal design of wavelength selective thermal emitter using one-dimensional (1D) and two-dimensional (2D) metal-dielectric gratings for thermophotovoltaic (TPV) applications. Proposed design consists of tungsten (W) and silicon dioxide (SiO2) gratings which can withstand high temperatures. Radiative properties of 1D grating were calculated using a numerical method, while effective medium approximation was used for 2D gratings. Optimal designs were obtained such that output power is maximum for GaSb photovoltaic (PV) cell at emitter temperature of 1500 K and radiated energy for longer wavelengths is limited to a low value. A constrained optimization was performed using genetic algorithm (GA) to arrive at optimal design.

13.
Materials (Basel) ; 10(8)2017 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-28773241

RESUMO

In this work, we theoretically analyze the performance characteristics of a near-field thermophotovoltaic system consisting a Mie-metamaterial emitter and GaSb-based photovoltaic cell at separations less than the thermal wavelength. The emitter consists of a tungsten nanoparticle-embedded thin film of SiO 2 deposited on bulk tungsten. Numerical results presented here are obtained using formulae derived from dyadic Green's function formalism and Maxwell-Garnett-Mie theory. We show that via the inclusion of tungsten nanoparticles, the thin layer of SiO 2 acts like an effective medium that enhances selective radiative heat transfer for the photons above the band gap of GaSb. We analyze thermophotovoltaic (TPV) performance for various volume fractions of tungsten nanoparticles and thicknesses of SiO 2 .

14.
Sci Rep ; 7(1): 6339, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28740087

RESUMO

We propose a theoretical concept of a far-field radiative thermal rectification device that uses a phase change material to achieve a high degree of asymmetry in radiative heat transfer. The proposed device has a multilayer structure on one side and a blackbody on other side. The multilayer structure consists of transparent thin film of KBr sandwiched between a thin film of VO2 and a reflecting layer of gold. When VO2 is in its insulating phase, the structure is highly reflective due to the two transparent layers on highly reflective gold. When VO2 is in the metallic phase, Fabry-Perot type of resonance occurs and the tri-layer structure acts like a wide-angle antireflection coating achieved by destructive interference of partially reflected waves making it highly absorptive for majority of spectral range of thermal radiation. The proposed structure forms the active part of configuration that acts like a far-field radiative thermal diode. Thermal rectification greater than 11 is obtained for a temperature bias of 20 K, which is the highest rectification ever predicted for far-field radiative diode configurations.


Assuntos
Nanoestruturas/química , Radiometria/instrumentação , Simulação por Computador , Condutividade Térmica
15.
Opt Express ; 24(10): A868-77, 2016 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-27409959

RESUMO

We theoretically demonstrate a novel, efficient and cost effective thermal emitter using a Mie-resonance metamaterial for thermophotovoltaic (TPV) applications. We propose for the first time the design of a thermal emitter which is based on nanoparticle-embedded thin film. The emitter consists of a thin film of SiO2 on the top of tungsten layer deposited on a substrate. The thin film is embedded with tungsten nanoparticles which alter the refractive index of the film. This gives rise to desired emissive properties in the wavelength range of 0.4 µm to 2 µm suitable for GaSb and InGaAs based photovoltaics. Effective dielectric properties are calculated using Maxwell-Garnett-Mie theory. Our calculations indicate this would significantly improve the efficiency of TPV cells. We introduce a new parameter to gauge the efficacy of thermal emitters and use it to compare different designs.

16.
Opt Express ; 23(19): A1129-39, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26406743

RESUMO

Microscopic thin films have shown wavelength selectivity in the context of radiative heat transfer. We propose a methodology to shift the wavelength selectivity in the desired location. This work deals with the far-field and near-field radiation from thin films embedded with nanoparticles. The calculations of emission spectra are performed using the Fresnel equations in the far-field limit, and using the dyadic Green's function formalism for transmissivity between the closely spaced objects in the near-field regime. For the media doped with nanoparticles, an effective dielectric function using the Maxwell-Garnett-Mie theory is used to calculate emissivity and radiative heat transfer. It has been shown that the wavelength selectivity in the emission spectra can be influenced by varying the size and/or the volume fraction of nanoparticles. We characterize the wavelength selectivity using real and imaginary parts of the effective refractive index. We show that the influence of nanoparticles on wavelength selectivity is different depending on whether the particles are of polar materials or are metallic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...