Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gastroenterology ; 166(1): 155-167.e2, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37832924

RESUMO

BACKGROUND & AIMS: Endoscopic assessment of ulcerative colitis (UC) typically reports only the maximum severity observed. Computer vision methods may better quantify mucosal injury detail, which varies among patients. METHODS: Endoscopic video from the UNIFI clinical trial (A Study to Evaluate the Safety and Efficacy of Ustekinumab Induction and Maintenance Therapy in Participants With Moderately to Severely Active Ulcerative Colitis) comparing ustekinumab and placebo for UC were processed in a computer vision analysis that spatially mapped Mayo Endoscopic Score (MES) to generate the Cumulative Disease Score (CDS). CDS was compared with the MES for differentiating ustekinumab vs placebo treatment response and agreement with symptomatic remission at week 44. Statistical power, effect, and estimated sample sizes for detecting endoscopic differences between treatments were calculated using both CDS and MES measures. Endoscopic video from a separate phase 2 clinical trial replication cohort was performed for validation of CDS performance. RESULTS: Among 748 induction and 348 maintenance patients, CDS was lower in ustekinumab vs placebo users at week 8 (141.9 vs 184.3; P < .0001) and week 44 (78.2 vs 151.5; P < .0001). CDS was correlated with the MES (P < .0001) and all clinical components of the partial Mayo score (P < .0001). Stratification by pretreatment CDS revealed ustekinumab was more effective than placebo (P < .0001) with increasing effect in severe vs mild disease (-85.0 vs -55.4; P < .0001). Compared with the MES, CDS was more sensitive to change, requiring 50% fewer participants to demonstrate endoscopic differences between ustekinumab and placebo (Hedges' g = 0.743 vs 0.460). CDS performance in the JAK-UC replication cohort was similar to UNIFI. CONCLUSIONS: As an automated and quantitative measure of global endoscopic disease severity, the CDS offers artificial intelligence enhancement of traditional MES capability to better evaluate UC in clinical trials and potentially practice.


Assuntos
Colite Ulcerativa , Humanos , Inteligência Artificial , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/tratamento farmacológico , Colonoscopia/métodos , Computadores , Indução de Remissão , Índice de Gravidade de Doença , Ustekinumab/efeitos adversos
2.
medRxiv ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-37693606

RESUMO

The prevalence of childhood obesity is increasing worldwide, along with the associated common comorbidities of type 2 diabetes and cardiovascular disease in later life. Motivated by evidence for a strong genetic component, our prior genome-wide association study (GWAS) efforts for childhood obesity revealed 19 independent signals for the trait; however, the mechanism of action of these loci remains to be elucidated. To molecularly characterize these childhood obesity loci we sought to determine the underlying causal variants and the corresponding effector genes within diverse cellular contexts. Integrating childhood obesity GWAS summary statistics with our existing 3D genomic datasets for 57 human cell types, consisting of high-resolution promoter-focused Capture-C/Hi-C, ATAC-seq, and RNA-seq, we applied stratified LD score regression and calculated the proportion of genome-wide SNP heritability attributable to cell type-specific features, revealing pancreatic alpha cell enrichment as the most statistically significant. Subsequent chromatin contact-based fine-mapping was carried out for genome-wide significant childhood obesity loci and their linkage disequilibrium proxies to implicate effector genes, yielded the most abundant number of candidate variants and target genes at the BDNF, ADCY3, TMEM18 and FTO loci in skeletal muscle myotubes and the pancreatic beta-cell line, EndoC-BH1. One novel implicated effector gene, ALKAL2 - an inflammation-responsive gene in nerve nociceptors - was observed at the key TMEM18 locus across multiple immune cell types. Interestingly, this observation was also supported through colocalization analysis using expression quantitative trait loci (eQTL) derived from the Genotype-Tissue Expression (GTEx) dataset, supporting an inflammatory and neurologic component to the pathogenesis of childhood obesity. Our comprehensive appraisal of 3D genomic datasets generated in a myriad of different cell types provides genomic insights into pediatric obesity pathogenesis.

3.
J Crohns Colitis ; 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37814351

RESUMO

BACKGROUND AND AIMS: Histologic disease activity in Inflammatory Bowel Disease (IBD) is associated with clinical outcomes and is an important endpoint in drug development. We developed deep learning models for automating histological assessments in IBD. METHODS: Histology images of intestinal mucosa from phase 2 and phase 3 clinical trials in Crohn's disease (CD) and Ulcerative Colitis (UC) were used to train artificial intelligence (AI) models to predict the Global Histology Activity Score (GHAS) for CD and Geboes histopathology score for UC. Three AI methods were compared. AI models were evaluated on held-back testing sets and model predictions were compared against an expert central reader and five independent pathologists. RESULTS: The model based on multiple instance learning and the attention mechanism (SA-AbMILP) demonstrated the best performance among competing models. AI modeled GHAS and Geboes sub-grades matched central readings with moderate to substantial agreement, with accuracies ranging from 65% to 89%. Furthermore, the model was able to distinguish the presence and absence of pathology across four selected histological features with accuracies for colon, in both CD and UC, ranging from 87% to 94% and, for CD ileum, ranging from 76% to 83%. For both CD and UC, and across anatomical compartments (ileum and colon) in CD, comparable accuracies against central readings were found between the model assigned scores and scores by an independent set of pathologists. CONCLUSIONS: Deep learning models based upon GHAS and Geboes scoring systems were effective at distinguishing between the presence and absence of IBD microscopic disease activity.

4.
Gastro Hep Adv ; 2(6): 830-842, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37736163

RESUMO

BACKGROUND AND AIMS: A key histopathological feature of inflammatory bowel disease is damage to the mucosa, including breakdown of the epithelial barrier. Human enteroids and colonoids are a critical bench-to-bedside tool for studying the epithelium in inflammatory bowel disease. The goal of the current study was to define transcriptional differences in healthy versus diseased subjects that are sustained in enteroids and colonoids, including from disease-spared tissue. METHODS: Biopsies and matching enteroid or colonoid cultures from pediatric patients with ileal Crohn disease (N = 6) and control subjects (N = 17) were subjected to RNA sequencing followed by bioinformatic and machine learning analyses. Late passage enteroids were exposed to cytokines to assess durable transcriptional differences. RESULTS: We observed substantial overlap of pathways upregulated in Crohn disease in enteroids and ileal biopsies, as well as colonoids and rectal biopsies. KEGG pathways for cytokine-cytokine receptor interaction, chemokine signaling, protein export, and Toll-like receptor signaling were upregulated in both ileal and rectal biopsies, as well as enteroids and colonoids. In vitro cytokine exposure reactivated genes previously increased in biopsies. Machine learning predicted biopsy location (100% accuracy) and donor disease status (83% accuracy). A random forest classifier generated using ileal enteroids identified rectal colonoids from ileal Crohn disease subjects with 80% accuracy. CONCLUSION: We confirmed transcriptional profiles of Crohn disease biopsies are expressed in enteroids and colonoids. Furthermore, transcriptomic data from disease-spared rectal tissue can identify patients with ileal Crohn disease. Our data support the use of patient enteroids and colonoids as critical translational tools for the study of inflammatory bowel disease.

5.
iScience ; 26(1): 105860, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36632062

RESUMO

The RNA-binding protein Pcbp2 is widely expressed in the innate and adaptive immune systems and is essential for mouse development. To determine whether Pcbp2 is required for CD4+ T cell development and function, we derived mice with conditional Pcbp2 deletion in CD4+ T cells and assessed their overall phenotype and proliferative responses to activating stimuli. We found that Pcbp2 is essential for T conventional cell (Tconv) proliferation, working through regulation of co-stimulatory signaling. Pcbp2 deficiency in the CD4+ lineage did not impact Treg abundance in vivo or function in vitro. In addition, our data demonstrate a clear association between Pcbp2 control of Runx1 exon 6 splicing in CD4+ T cells and a specific role for Pcbp2 in the maintenance of peripheral CD4+ lymphocyte population size. Last, we show that Pcbp2 function is required for optimal in vivo Tconv cell activation in a T cell adoptive transfer colitis model system.

6.
Commun Biol ; 4(1): 1274, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34754074

RESUMO

We performed genome-wide association study meta-analysis to identify genetic determinants of skeletal age (SA) deviating in multiple growth disorders. The joint meta-analysis (N = 4557) in two multiethnic cohorts of school-aged children identified one locus, CYP11B1 (expression confined to the adrenal gland), robustly associated with SA (rs6471570-A; ß = 0.14; P = 6.2 × 10-12). rs6410 (a synonymous variant in the first exon of CYP11B1 in high LD with rs6471570), was prioritized for functional follow-up being second most significant and the one closest to the first intron-exon boundary. In 208 adrenal RNA-seq samples from GTEx, C-allele of rs6410 was associated with intron 3 retention (P = 8.11 × 10-40), exon 4 inclusion (P = 4.29 × 10-34), and decreased exon 3 and 5 splicing (P = 7.85 × 10-43), replicated using RT-PCR in 15 adrenal samples. As CYP11B1 encodes 11-ß-hydroxylase, involved in adrenal glucocorticoid and mineralocorticoid biosynthesis, our findings highlight the role of adrenal steroidogenesis in SA in healthy children, suggesting alternative splicing as a likely underlying mechanism.


Assuntos
Processamento Alternativo , Desenvolvimento Ósseo/genética , Esteroide 11-beta-Hidroxilase/genética , Determinação da Idade pelo Esqueleto , Criança , Feminino , Humanos , Masculino , Esteroide 11-beta-Hidroxilase/metabolismo
7.
Mol Cell Biol ; 41(9): e0066820, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34180713

RESUMO

We previously demonstrated that the two paralogous RNA-binding proteins PCBP1 and PCBP2 are individually essential for mouse development: Pcbp1-null embryos are peri-implantation lethal, while Pcbp2-null embryos lose viability at midgestation. Midgestation Pcbp2-/- embryos revealed a complex phenotype that included loss of certain hematopoietic determinants. Whether PCBP2 directly contributes to erythropoietic differentiation and whether PCBP1 has a role in this process remained undetermined. Here, we selectively inactivated the genes encoding these two RNA-binding proteins during differentiation of the erythroid lineage in the developing mouse embryo. Individual inactivation of either locus failed to impact viability or blood formation. However, combined inactivation of the two loci resulted in midgestational repression of erythroid/hematopoietic gene expression, loss of blood formation, and fetal demise. Orthogonal ex vivo analyses of primary erythroid progenitors selectively depleted of these two RNA-binding proteins revealed that they mediate a combination of overlapping and isoform-specific impacts on hematopoietic lineage transcriptome, impacting both mRNA representation and exon splicing. These data lead us to conclude that PCBP1 and PCBP2 mediate functions critical to differentiation of the erythroid lineage.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Eritropoese , Proteínas de Ligação a RNA/metabolismo , Envelhecimento/fisiologia , Animais , Linhagem da Célula , Proteínas de Ligação a DNA/genética , Embrião de Mamíferos/metabolismo , Células Eritroides/citologia , Éxons/genética , Loci Gênicos , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Splicing de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Transcriptoma/genética
8.
Nat Commun ; 12(1): 1515, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750777

RESUMO

Ribosome-profiling has uncovered pervasive translation in non-canonical open reading frames, however the biological significance of this phenomenon remains unclear. Using genetic variation from 71,702 human genomes, we assess patterns of selection in translated upstream open reading frames (uORFs) in 5'UTRs. We show that uORF variants introducing new stop codons, or strengthening existing stop codons, are under strong negative selection comparable to protein-coding missense variants. Using these variants, we map and validate gene-disease associations in two independent biobanks containing exome sequencing from 10,900 and 32,268 individuals, respectively, and elucidate their impact on protein expression in human cells. Our results suggest translation disrupting mechanisms relating uORF variation to reduced protein expression, and demonstrate that translation at uORFs is genetically constrained in 50% of human genes.


Assuntos
Doença/genética , Fases de Leitura Aberta , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regiões 5' não Traduzidas , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Estudos de Associação Genética , Genoma Humano , Humanos , Fenótipo , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Proteínas/genética , Receptor EphB2
9.
Cell Mol Gastroenterol Hepatol ; 11(3): 667-682, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33069917

RESUMO

BACKGROUND & AIMS: Inflammatory bowel disease (IBD) is a polygenic disorder characterized principally by dysregulated inflammation impacting the gastrointestinal tract. However, there also is increasing evidence for a clinical association with stress and depression. Given the role of the hypothalamus in stress responses and in the pathogenesis of depression, useful insights could be gleaned from understanding its genetic role in IBD. METHODS: We conducted genetic correlation analyses on publicly available genome-wide association study summary statistics for depression and IBD traits to identify genetic commonalities. We used partitioned linkage disequilibrium score regression, leveraging our ATAC sequencing and promoter-focused Capture C data, to measure enrichment of IBD single-nucleotide polymorphisms within promoter-interacting open chromatin regions of human embryonic stem cell-derived hypothalamic-like neurons (HNs). Using the same data sets, we performed variant-to-gene mapping to implicate putative IBD effector genes in HNs. To contrast these results, we similarly analyzed 3-dimensional genomic data generated in epithelium-derived colonoids from rectal biopsy specimens from donors without pathologic disease noted at the time of colonoscopy. Finally, we conducted enrichment pathway analyses on the implicated genes to identify putative IBD dysfunctional pathways. RESULTS: We found significant genetic correlations (rg) of 0.122 with an adjusted P (Padj) = 1.4 × 10-4 for IBD: rg = 0.122; Padj = 2.5 × 10-3 for ulcerative colitis and genetic correlation (rg) = 0.094; Padj = 2.5 × 10-3 for Crohn's disease, and significant approximately 4-fold (P = .005) and approximately 7-fold (P = .03) enrichment of IBD single-nucleotide polymorphisms in HNs and colonoids, respectively. We implicated 25 associated genes in HNs, among which CREM, CNTF, and RHOA encode key regulators of stress. Seven genes also additionally were implicated in the colonoids. We observed an overall enrichment for immune and hormonal signaling pathways, and a colonoid-specific enrichment for microbiota-relevant terms. CONCLUSIONS: Our results suggest that the hypothalamus warrants further study in the context of IBD pathogenesis.


Assuntos
Depressão/genética , Predisposição Genética para Doença , Hipotálamo/fisiopatologia , Doenças Inflamatórias Intestinais/genética , Estresse Psicológico/genética , Eixo Encéfalo-Intestino , Estudos de Casos e Controles , Mapeamento Cromossômico , Conjuntos de Dados como Assunto , Depressão/fisiopatologia , Estudo de Associação Genômica Ampla , Humanos , Sistema Hipotálamo-Hipofisário/fisiopatologia , Hipotálamo/citologia , Doenças Inflamatórias Intestinais/fisiopatologia , Desequilíbrio de Ligação , Neurônios , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Estresse Psicológico/fisiopatologia
10.
Cell Rep ; 33(11): 108500, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33326785

RESUMO

Immune cell function is influenced by metabolic conditions. Low-glucose, high-lactate environments, such as the placenta, gastrointestinal tract, and the tumor microenvironment, are immunosuppressive, especially for glycolysis-dependent effector T cells. We report that nicotinamide adenine dinucleotide (NAD+), which is reduced to NADH by lactate dehydrogenase in lactate-rich conditions, is a key point of metabolic control in T cells. Reduced NADH is not available for NAD+-dependent enzymatic reactions involving glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and 3-phosphoglycerate dehydrogenase (PGDH). We show that increased lactate leads to a block at GAPDH and PGDH, leading to the depletion of post-GAPDH glycolytic intermediates, as well as the 3-phosphoglycerate derivative serine that is known to be important for T cell proliferation. Supplementing serine rescues the ability of T cells to proliferate in the presence of lactate-induced reductive stress. Directly targeting the redox state may be a useful approach for developing novel immunotherapies in cancer and therapeutic immunosuppression.


Assuntos
Ácido Láctico/metabolismo , NAD/metabolismo , Proliferação de Células , Humanos , Oxirredução
11.
Nat Commun ; 11(1): 527, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31988292

RESUMO

G-quadruplex (G4) sequences are abundant in untranslated regions (UTRs) of human messenger RNAs, but their functional importance remains unclear. By integrating multiple sources of genetic and genomic data, we show that putative G-quadruplex forming sequences (pG4) in 5' and 3' UTRs are selectively constrained, and enriched for cis-eQTLs and RNA-binding protein (RBP) interactions. Using over 15,000 whole-genome sequences, we find that negative selection acting on central guanines of UTR pG4s is comparable to that of missense variation in protein-coding sequences. At multiple GWAS-implicated SNPs within pG4 UTR sequences, we find robust allelic imbalance in gene expression across diverse tissue contexts in GTEx, suggesting that variants affecting G-quadruplex formation within UTRs may also contribute to phenotypic variation. Our results establish UTR G4s as important cis-regulatory elements and point to a link between disruption of UTR pG4 and disease.


Assuntos
Quadruplex G , Proteínas de Ligação a RNA/metabolismo , Regiões não Traduzidas , Estudos de Associação Genética , Variação Genética , Humanos , Motivos de Nucleotídeos , Dobramento de RNA , Proteínas de Ligação a RNA/fisiologia
12.
Dev Cell ; 49(1): 10-29, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30930166

RESUMO

Single-cell gene expression analyses of mammalian tissues have uncovered profound stage-specific molecular regulatory phenomena that have changed the understanding of unique cell types and signaling pathways critical for lineage determination, morphogenesis, and growth. We discuss here the case for a Pediatric Cell Atlas as part of the Human Cell Atlas consortium to provide single-cell profiles and spatial characterization of gene expression across human tissues and organs. Such data will complement adult and developmentally focused HCA projects to provide a rich cytogenomic framework for understanding not only pediatric health and disease but also environmental and genetic impacts across the human lifespan.


Assuntos
Desenvolvimento Embrionário/genética , Redes Reguladoras de Genes/genética , Pediatria/tendências , Análise de Célula Única/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Distribuição Tecidual/genética
13.
Mol Cell Biol ; 38(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29866654

RESUMO

Formation of the mammalian hematopoietic system is under a complex set of developmental controls. Here, we report that mouse embryos lacking the KH domain poly(C) binding protein, Pcbp2, are selectively deficient in the definitive erythroid lineage. Compared to wild-type controls, transcript splicing analysis of the Pcbp2-/- embryonic liver reveals accentuated exclusion of an exon (exon 6) that encodes a highly conserved transcriptional control segment of the hematopoietic master regulator, Runx1. Embryos rendered homozygous for a Runx1 locus lacking this cassette exon (Runx1ΔE6) effectively phenocopy the loss of the definitive erythroid lineage in Pcbp2-/- embryos. These data support a model in which enhancement of Runx1 cassette exon 6 inclusion by Pcbp2 serves a critical role in development of hematopoietic progenitors and constitutes a critical step in the developmental pathway of the definitive erythropoietic lineage.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , Eritropoese/genética , Eritropoese/fisiologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Subunidade alfa 2 de Fator de Ligação ao Core/deficiência , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Éxons , Regulação da Expressão Gênica no Desenvolvimento , Globinas/genética , Hematopoese/genética , Hematopoese/fisiologia , Humanos , Células K562 , Fígado/embriologia , Fígado/metabolismo , Camundongos , Camundongos Knockout , Splicing de RNA , Deleção de Sequência
14.
Mol Cell Biol ; 36(2): 304-19, 2016 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-26527618

RESUMO

RNA-binding proteins participate in a complex array of posttranscriptional controls essential to cell type specification and somatic development. Despite their detailed biochemical characterizations, the degree to which each RNA-binding protein impacts mammalian embryonic development remains incompletely defined, and the level of functional redundancy among subsets of these proteins remains open to question. The poly(C) binding proteins, PCBPs (αCPs and hnRNP E proteins), are encoded by a highly conserved and broadly expressed gene family. The two major Pcbp isoforms, Pcbp2 and Pcbp1, are robustly expressed in a wide range of tissues and exert both nuclear and cytoplasmic controls over gene expression. Here, we report that Pcbp1-null embryos are rendered nonviable in the peri-implantation stage. In contrast, Pcbp2-null embryos undergo normal development until midgestation (12.5 to 13.5 days postcoitum), at which time they undergo a dramatic loss in viability associated with combined cardiovascular and hematopoietic abnormalities. Mice heterozygous for either Pcbp1 or Pcbp2 null alleles display a mild and nondisruptive defect in initial postpartum weight gain. These data reveal that Pcbp1 and Pcbp2 are individually essential for mouse embryonic development and have distinct impacts on embryonic viability and that Pcpb2 has a nonredundant in vivo role in hematopoiesis. These data further provide direct evidence that Pcbp1, a retrotransposed derivative of Pcpb2, has evolved an essential function(s) in the mammalian genome.


Assuntos
Proteínas de Transporte/genética , Camundongos/embriologia , Proteínas de Ligação a RNA/genética , Animais , Sequência de Bases , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA , Embrião de Mamíferos/metabolismo , Deleção de Genes , Regulação da Expressão Gênica , Loci Gênicos , Hematopoese , Camundongos/genética , Dados de Sequência Molecular , Proteínas de Ligação a RNA/metabolismo , Transcriptoma
15.
Gene Expr Patterns ; 14(2): 78-87, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24480778

RESUMO

RNA-binding proteins and corresponding post-transcriptional controls play critical roles in gene expression. The poly-(C) binding proteins, PCBPs (αCPs, hnRNPEs), comprise a well-characterized family of abundant RNA-binding proteins that impact on RNA processing in the nucleus as well as mRNA stability and translation in the cytoplasm. Here we demonstrate that PCBP1 and PCBP2 are abundantly expressed in the gastric epithelium with prominent enrichment in specific cell types within the gastric glandular mucosa. The spatial and intracellular patterns of PCBP1 and PCBP2 expression in these regions are highly correlated. Remarkably, we observe that these proteins are present in the nuclear and cytoplasmic compartments of zymogenic chief cells while they are restricted to the nuclear compartment in acid-secreting parietal cells and poorly expressed in pit cells that line the gland exit. This specificity of expression patterns and subcellular localization of PCBP1 and PCBP2, along with their appearance in the precursor tissues of the gastric epithelium during early postnatal development, suggests these RNA-binding proteins play specific roles in cell differentiation and organismal development within the gastric glandular epithelium.


Assuntos
Proteínas de Transporte/metabolismo , Celulas Principais Gástricas/metabolismo , Mucosa Gástrica/citologia , Mucosa Gástrica/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Proteínas de Transporte/genética , Nucléolo Celular/metabolismo , Citoplasma/metabolismo , Proteínas de Ligação a DNA , Imunofluorescência , Regulação da Expressão Gênica , Camundongos , Especificidade de Órgãos/genética , Ligação Proteica , Transporte Proteico , Proteínas de Ligação a RNA/genética , Células-Tronco/metabolismo
16.
PLoS One ; 4(10): e7469, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19829692

RESUMO

The growth factor interleukin-3 (IL-3) promotes the survival and growth of multipotent hematopoietic progenitors and stimulates myelopoiesis. It has also been reported to oppose terminal granulopoiesis and to support leukemic cell growth through autocrine or paracrine mechanisms. The degree to which IL-3 acts at the posttranscriptional level is largely unknown. We have conducted global mRNA decay profiling and bioinformatic analyses in 32Dcl3 myeloblasts indicating that IL-3 caused immediate early stabilization of hundreds of transcripts in pathways relevant to myeloblast function. Stabilized transcripts were enriched for AU-Response elements (AREs), and an ARE-containing domain from the interleukin-6 (IL-6) 3'-UTR rendered a heterologous gene responsive to IL-3-mediated transcript stabilization. Many IL-3-stabilized transcripts had been associated with leukemic transformation. Deregulated Abl kinase shared with IL-3 the ability to delay turnover of transcripts involved in proliferation or differentiation blockade, relying, in part, on signaling through the Mek/Erk pathway. These findings support a model of IL-3 action through mRNA stability control and suggest that aberrant stabilization of an mRNA network linked to IL-3 contributes to leukemic cell growth.


Assuntos
Regulação Neoplásica da Expressão Gênica , Células Precursoras de Granulócitos/metabolismo , Interleucina-3/metabolismo , Proteínas Proto-Oncogênicas c-abl/metabolismo , Estabilidade de RNA/genética , Motivos de Aminoácidos , Animais , Biologia Computacional/métodos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , MAP Quinase Quinase 1/metabolismo , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Processamento Pós-Transcricional do RNA , Elementos de Resposta
17.
Cell Cycle ; 5(24): 2899-902, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17172866

RESUMO

Inactivation of the cyclin-dependent kinase (CDK) inhibitor p21(Waf1/Cip1) (CDKN1; hereafter p21) has previously been implicated in the induction of numerical centrosome alterations. It is unclear, however, whether p21 deficiency deregulates the centrosome duplication cycle itself or causes an accumulation of centrosomes due to cell division failure and/or polyploidization. Using a novel marker for maternal centrioles, Cep170, we show here that knock-down of p21 protein expression in murine myeloblasts can stimulate excessive centriole numbers in the presence of only one mature centriole. These results indicate that p21 deficiency can trigger a bona fide overduplication of centrioles and that aberrant centrosome numbers cannot solely be explained by polyploidization as suggested by previous studies. Our findings underscore that impaired p21 expression may function as a driving force for chromosomal instability and highlight the importance of markers for maternal centrioles such as Cep170 to elucidate the pathogenesis of numerical centriole aberrations in tumor cells.


Assuntos
Centríolos/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/deficiência , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Animais , Células Precursoras de Granulócitos/citologia , Camundongos , RNA Interferente Pequeno/metabolismo
18.
Leuk Res ; 30(10): 1285-92, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16499966

RESUMO

Defining the molecular mechanisms that prevent myeloid progenitor cells from maturing is important because defects in maturation contribute to the development of myeloproliferative and myelodysplastic diseases. IL-3 is an important developmental factor for myeloid progenitor cells in vivo and is required to maintain the undifferentiated state in the 32Dcl3 cell line. The mechanisms employed by IL-3 to block differentiation, however, are not well understood. 32Dcl3 cells are myeloid progenitor cells of murine origin with high basal levels of p21waf1/cip1 (p21) expression. Our laboratory has previously reported that p21 levels decreased as CD34+-derived myeloid progenitor cells underwent terminal granulopoiesis in vitro. The effect of p21 upon the expression of genes associated with granulocytic differentiation has been unexplored, however. Since IL-3 maintains high levels of p21 in 32Dcl3 cells, we tested the hypothesis that p21 is an inhibitor of myeloid differentiation. Our findings demonstrate that siRNA knockdown of murine p21 is correlated with premature expression of the primary granule proteins myeloperoxidase and proteinase-3, proteins not abundant in cells maintained as myeloblasts by IL-3. Rescue with human p21 in these cells suppressed premature granule protein expression. p21 knockdown was also found to accelerate morphologic granulocytic differentiation in 32Dcl3 cells stimulated with G-CSF. Since high expression levels of p21 and overexpression of the IL-3 receptor have been correlated with poor outcomes in acute myeloid leukemias (AML), differentiation blockade by p21 may be one mechanism that contributes to AML pathogenesis.


Assuntos
Diferenciação Celular/fisiologia , Inibidor de Quinase Dependente de Ciclina p21/genética , Fator Estimulador de Colônias de Granulócitos/farmacologia , Granulócitos/citologia , Animais , Sequência de Bases , Northern Blotting , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/antagonistas & inibidores , Primers do DNA , Regulação da Expressão Gênica , Granulócitos/efeitos dos fármacos , Granulócitos/fisiologia , Interleucina-3/farmacologia , Leucemia Mieloide Aguda/patologia , Camundongos , Dados de Sequência Molecular , Plasmídeos , Reação em Cadeia da Polimerase , Transcrição Gênica
19.
Leuk Res ; 29(11): 1315-23, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15893818

RESUMO

p21(waf 1/cip 1) (p21), best known for its ability to regulate the cell cycle, has been noted also to exert cell cycle-independent effects on apoptosis and differentiation. Inhibition of apoptosis by p21 has been reported in hematopoietic models, particularly in monocytes exposed to apoptogenic agents. The effect of p21 on survival has not hitherto been analyzed during the myeloblast to granulocyte transition. Using 32 Dc l3 murine myeloblasts, a cell line that proliferates in IL-3 and differentiates in G-CSF, we studied the effects of forced expression of p21 on cell survival. We hypothesized that exogenous p21 would suppress the modest levels of cell death associated with G-CSF-mediated differentiation of 32 Dc l3 cells. Contrary to expectations, we found that exogenous p21 enhanced apoptosis of cells removed from IL-3. The p21 overexpression led to decreased cell growth, caspase-3 activation and annexin positivity. These effects occurred only in the presence of G-CSF. These findings suggest that p21 is proapoptotic in granulopoiesis, and that this effect is masked by IL-3-mediated survival signals. Our results also indicate there are distinct and opposing effects of p21 on monocytic and granulocytic survival. Aberrantly high levels of p21 may contribute to disease processes involving excessive apoptosis of granulocyte precursors.


Assuntos
Apoptose/fisiologia , Inibidor de Quinase Dependente de Ciclina p21/farmacologia , Granulócitos/fisiologia , Animais , Anexinas/efeitos dos fármacos , Anexinas/metabolismo , Apoptose/efeitos dos fármacos , Caspase 3 , Caspases/efeitos dos fármacos , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/antagonistas & inibidores , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Regulação da Expressão Gênica , Fator Estimulador de Colônias de Granulócitos/farmacologia , Granulócitos/citologia , Granulócitos/efeitos dos fármacos , Interleucina-3/farmacologia , Camundongos , Monócitos/efeitos dos fármacos , Monócitos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...