Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys Rev ; 15(3): 401-417, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37396444

RESUMO

Hair and nails are human biomarkers capable of providing a continuous assessment of the concentrations of elements inside the human body to indicate the nutritional status, metabolic changes, and the pathogenesis of various human diseases. Laser-induced breakdown spectroscopy (LIBS) and X-ray fluorescence (XRF) spectrometry are robust and multi-element analytical techniques able to analyze biological samples of various kinds for disease diagnosis. The primary objective of this review article is to focus on the major developments and advances in LIBS and XRF for the elemental analysis of hair and nails over the last 10-year period. The developments in the qualitative and quantitative analyses of human hair and nail samples are discussed in detail, with special emphasis on the key aspects of elemental imaging and distribution of essential and non-essential elements within the hair and nail tissue samples. Microchemical imaging applications by LIBS and XRF (including micro-XRF and scanning electron microscopy, SEM) are also presented for healthy as well as diseased tissue hair and nail samples in the context of disease diagnosis. In addition, main challenges, prospects, and complementarities of LIBS and XRF toward analyzing human hair and nails for disease diagnosis are also thoroughly discussed here.

2.
Biophys Rev ; 10(5): 1221-1239, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30338479

RESUMO

With the advent of improved experimental techniques and enhanced precision, laser-induced breakdown spectroscopy (LIBS) offers a robust tool for probing the chemical constituents of samples of interest in biological sciences. As the interest continues to grow rapidly, the domain of study encompasses a variety of applications vis-à-vis biological species and microbes. LIBS is basically an atomic emission spectroscopy of plasma produced by the high-power pulsed laser which is tightly focused on the surface of any kinds of target materials in any phase. Due to its experimental simplicity, and versatility, LIBS has achieved its high degree of interest particularly in the fields of agricultural science, environmental science, medical science, forensic sciences, and biology. It has become a strong and sensitive elemental analysis tool as compared to the traditional gold standard techniques. As such, it offers a handy, rapid, and flexible elemental measurement of the sample compositions, together with the added benefits of less cumbersome sample preparation requirements. This technique has extensively been used to detect various microorganisms, extending the horizon from bacteria, molds, to yeasts, and spores on surfaces, while also being successful in sensing disease-causing viruses. LIBS-based probe has also enabled successful detection of bacteria in agriculture as well. In order for good quality processing of food, LIBS is also being used to detect and identify bacteria such as Salmonella enteric serovar typhimurium that causes food contamination. Differences in soil bacteria isolated from different mining sites are a very good indicator of relative environmental soil quality. In this connection, LIBS has effectively been employed to discriminate both the inter- and intra-site differences of the soil quality across varying mining sites. Therefore, this article summarizes the basic theory and use of LIBS for identifying microbes causing serious agricultural and environmental infectious diseases.

3.
Appl Spectrosc ; 71(4): 686-698, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28195505

RESUMO

In this study, the laser-induced breakdown spectroscopy (LIBS) technique was used to identify and compare the presence of major nutrient elements in organic and conventional vegetables. Different parts of cauliflowers and broccolis were used as working samples. Laser-induced breakdown spectra from these samples were acquired at optimum values of laser energy, gate delay, and gate width. Both univariate and multivariate analyses were performed for the comparison of these organic and conventional vegetable flowers. Principal component analysis (PCA) was taken into account for multivariate analysis while for univariate analysis, the intensity of selected atomic lines of different elements and their intensity ratio with some reference lines of organic cauliflower and broccoli samples were compared with those of conventional ones. In addition, different parts of the cauliflower and broccoli were compared in terms of intensity and intensity ratio of elemental lines.

4.
Appl Opt ; 54(34): 10264-71, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26836686

RESUMO

Laser Induced Breakdown Spectroscopy (LIBS) is an ideal analytical technique for in situ analysis of elemental composition. We have performed a comparative study of the quantitative and qualitative analysis of atomic and molecular emission from LIBS spectra. In our experiments, a mixture of SrCl2 and Al2O3 in powder form was used as a sample. The atomic emission from Sr and molecular emission from SrCl and SrO observed in LIBS spectra were analyzed. The optimum laser energies, gate delays, and gate widths for selected atomic lines and molecular bands were determined from spectra recorded at various experimental parameters. These optimum experimental conditions were used to collect calibration data, and the calibration curves were used to predict the Sr concentration. Limits of detection (LODs) for selected atomic and molecular emission spectra were determined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...