Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 11(4)2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918484

RESUMO

Biological materials derived from extracellular matrix (ECM) proteins have garnered interest as their composition is very similar to that of native tissue. Herein, we report the use of human cornea derived decellularized ECM (dECM) microparticles dispersed in human fibrin sealant as an accessible therapeutic alternative for corneal anterior stromal reconstruction. dECM microparticles had good particle size distribution (≤10 µm) and retained the majority of corneal ECM components found in native tissue. Fibrin-dECM hydrogels exhibited compressive modulus of 70.83 ± 9.17 kPa matching that of native tissue, maximum burst pressure of 34.3 ± 3.7 kPa, and demonstrated a short crosslinking time of ~17 min. The fibrin-dECM hydrogels were found to be biodegradable, cytocompatible, non-mutagenic, non-sensitive, non-irritant, and supported the growth and maintained the phenotype of encapsulated human corneal stem cells (hCSCs) in vitro. In a rabbit model of anterior lamellar keratectomy, fibrin-dECM bio-adhesives promoted corneal re-epithelialization within 14 days, induced stromal tissue repair, and displayed integration with corneal tissues in vivo. Overall, our results suggest that the incorporation of cornea tissue-derived ECM microparticles in fibrin hydrogels is non-toxic, safe, and shows tremendous promise as a minimally invasive therapeutic approach for the treatment of superficial corneal epithelial wounds and anterior stromal injuries.


Assuntos
Córnea/citologia , Matriz Extracelular/metabolismo , Cicatrização , Animais , Cadáver , Proliferação de Células , Córnea/patologia , Córnea/fisiologia , Doenças da Córnea/patologia , Doenças da Córnea/terapia , Matriz Extracelular/química , Fibrina/química , Humanos , Hidrogéis/química , Coelhos , Transplante de Células-Tronco , Células-Tronco/citologia , Células-Tronco/metabolismo , Engenharia Tecidual
2.
J Biomed Mater Res B Appl Biomater ; 107(6): 2019-2029, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30549205

RESUMO

Synovium-derived mesenchymal stem cells (SMSCs) are an emerging cell source for regenerative medicine applications, including osteochondral defect (OCD) repair. However, in contrast to bone marrow MSCs, scaffold compositions which promote SMSC chondrogenesis/osteogenesis are still being identified. In the present manuscript, we examine poly(ethylene) glycol (PEG)-based scaffolds containing zonally-specific biochemical cues to guide SMSC osteochondral differentiation. Specifically, SMSCs were encapsulated in PEG-based scaffolds incorporating glycosaminoglycans (hyaluronan or chondroitin-6-sulfate [CSC]), low-dose of chondrogenic and osteogenic growth factors (TGFß1 and BMP2, respectively), or osteoinductive poly(dimethylsiloxane) (PDMS). Initial studies suggested that PEG-CSC-TGFß1 scaffolds promoted enhanced SMSC chondrogenic differentiation, as assessed by significant increases in Sox9 and aggrecan. Conversely, PEG-PDMS-BMP2 scaffolds stimulated increased levels of osteoblastic markers with significant mineral deposition. A "Transition" zone formulation was then developed containing a graded mixture of the chondrogenic and osteogenic signals present in the PEG-CSC-TGFß1 and PEG-PDMS-BMP2 constructs. SMSCs within the "Transition" formulation displayed a phenotypic profile similar to hypertrophic chondrocytes, with the highest expression of collagen X, intermediate levels of osteopontin, and mineralization levels equivalent to "bone" formulations. Overall, these results suggest that a graded transition from PEG-CSC-TGFß1 to PEG-PDMS-BMP2 scaffolds elicits a gradual SMSC phenotypic shift from chondrocyte to hypertrophic chondrocyte to osteoblast-like. As such, further development of these scaffold formulations for use in SMSC-based OCD repair is warranted. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 2019-2029, 2019.


Assuntos
Condrogênese , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Membrana Sinovial/metabolismo , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Antígenos de Diferenciação/biossíntese , Dimetilpolisiloxanos/química , Cães , Humanos , Masculino
3.
J Tissue Eng Regen Med ; 12(12): 2256-2265, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30350469

RESUMO

Clinical use of human embryonic stem cells (hESCs) in bone regeneration applications requires that their osteogenic differentiation be highly controllable as well as time- and cost-effective. The main goals of the current work were thus (a) to assess whether overexpression of pluripotency regulator Forkhead Box D3 (FOXD3) can enhance the osteogenic commitment of hESCs seeded in three-dimensional (3D) scaffolds and (b) to evaluate if the degree of FOXD3 overexpression regulates the strength and specificity of hESC osteogenic commitment. In conducting these studies, an interpenetrating hydrogel network consisting of poly(ethylene glycol) diacrylate and collagen I was utilized as a 3D culture platform. Expression of osteogenic, chondrogenic, pluripotency, and germ layer markers by encapsulated hESCs was measured after 2 weeks of culture in osteogenic medium in the presence or absence doxycycline-induced FOXD3 transgene expression. Towards the first goal, FOXD3 overexpression initiated 24 hr prior to hESC encapsulation, relative to unstimulated controls, resulted in upregulation of osteogenic markers and enhanced calcium deposition, without promoting off-target effects. However, when initiation of FOXD3 overexpression was increased from 24 to 48 hr prior to encapsulation, hESC osteogenic commitment was not further enhanced and off-target effects were noted. Specifically, relative to 24-hr prestimulation, initiation of FOXD3 overexpression 48 hr prior to encapsulation yielded increased expression of pluripotency markers while reducing mesodermal but increasing endodermal germ layer marker expression. Combined, the current results indicate that the controlled overexpression of FOXD3 warrants further investigation as a mechanism to guide enhanced hESC osteogenic commitment.


Assuntos
Diferenciação Celular , Fatores de Transcrição Forkhead/biossíntese , Regulação da Expressão Gênica , Células-Tronco Embrionárias Humanas/metabolismo , Osteogênese , Alicerces Teciduais/química , Antígenos de Diferenciação/biossíntese , Antígenos de Diferenciação/genética , Linhagem Celular , Células Imobilizadas/citologia , Células Imobilizadas/metabolismo , Fatores de Transcrição Forkhead/genética , Células-Tronco Embrionárias Humanas/citologia , Humanos
4.
J Biomed Mater Res A ; 106(9): 2382-2393, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29633508

RESUMO

Tissue engineered bone grafts based on bone marrow mesenchymal stromal cells (MSCs) are being actively developed for craniomaxillofacial (CMF) applications. As for all tissue engineered implants, the bone-regenerating capacity of these MSC-based grafts must first be evaluated in animal models prior to human trials. Canine models have traditionally resulted in improved clinical translation of CMF grafts relative to other animal models. However, the utility of canine CMF models for evaluating MSC-based bone grafts rests on canine MSCs (cMSCs) responding in a similar manner to scaffold-based stimuli as human MSCs (hMSCs). Herein, cMSC and hMSC responses to polyethylene glycol (PEG)-based scaffolds were therefore compared in the presence or absence of osteoinductive polydimethylsiloxane (PDMS). Notably, the conjugation of PDMS to PEG-based constructs resulted in increases in both cMSC and hMSC osteopontin and calcium deposition. Based on these results, cMSCs were further used to assess the efficacy of tethered bone morphogenic protein 2 (BMP2) in enhancing PEG-PDMS scaffold osteoinductivity. Addition of low doses of tethered BMP2 (100 ng/mL) to PEG-PDMS systems increased cMSC expression of osterix and osteopontin compared to both PEG-PDMS and PEG-BMP2 controls. Furthermore, these increases were comparable to effects seen with up to five-times higher BMP2 doses noted in literature. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A:2382-2393, 2018.


Assuntos
Células da Medula Óssea/citologia , Osso e Ossos/fisiologia , Células-Tronco Mesenquimais/citologia , Alicerces Teciduais/química , Adipogenia , Animais , Biomarcadores/metabolismo , Condrogênese , Dimetilpolisiloxanos/química , Cães , Feminino , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Modelos Animais , Osteogênese , Polietilenoglicóis/química , Adulto Jovem
5.
J Biomed Mater Res B Appl Biomater ; 106(3): 1369-1382, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28580629

RESUMO

Nature manufactures biological systems in three dimensions with precisely controlled spatiotemporal profiles on hierarchical length and time scales. In this article, we review 3D patterning of biological systems on synthetic platforms for neuropharmacological applications. We briefly describe 3D versus 2D chemical and topographical patterning methods and their limitations. Subsequently, an overview of introducing a third dimension in neuropharmacological research with delineation of chemical and topographical roles is presented. Finally, toward the end of this article, an explanation of how 3D patterning has played a pivotal role in relevant fields of neuropharmacology to understand neurophysiology during development, normal health, and disease conditions is described. The future prospects of organs-on-a--like devices to mimic patterned blood-brain barrier in the context of neurotherapeutic discovery and development for the prioritization of lead candidates, membrane potential, and toxicity testing are also described. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1369-1382, 2018.


Assuntos
Engenharia Biomédica/tendências , Imageamento Tridimensional , Neurofarmacologia/métodos , Animais , Materiais Biocompatíveis , Portadores de Fármacos , Humanos , Neurofarmacologia/tendências
6.
Biomaterials ; 40: 32-42, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25433604

RESUMO

Collagen hydrogels have been widely investigated as scaffolds for vascular tissue engineering due in part to the capacity of collagen to promote robust cell adhesion and elongation. However, collagen hydrogels display relatively low stiffness and strength, are thrombogenic, and are highly susceptible to cell-mediated contraction. In the current work, we develop and characterize a sequentially-formed interpenetrating network (IPN) that retains the benefits of collagen, but which displays enhanced mechanical stiffness and strength, improved thromboresistance, high physical stability and resistance to contraction. In this strategy, we first form a collagen hydrogel, infuse this hydrogel with poly(ethylene glycol) diacrylate (PEGDA), and subsequently crosslink the PEGDA by exposure to longwave UV light. These collagen-PEGDA IPNs allow for cell encapsulation during the fabrication process with greater than 90% cell viability via inclusion of cells within the collagen hydrogel precursor solution. Furthermore, the degree of cell spreading within the IPNs can be tuned from rounded to fully elongated by varying the time delay between the formation of the cell-laden collagen hydrogel and the formation of the PEGDA network. We also demonstrate that these collagen-PEGDA IPNs are able to support the initial stages of smooth muscle cell lineage progression by elongated human mesenchymal stems cells.


Assuntos
Prótese Vascular , Colágeno/farmacologia , Teste de Materiais/métodos , Polietilenoglicóis/farmacologia , Engenharia Tecidual , Animais , Linhagem da Célula/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Peso Molecular , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Fenótipo , Ratos , Reologia/efeitos dos fármacos , Sus scrofa , Resistência à Tração/efeitos dos fármacos , Trombose/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...