Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; 16(24): e202300930, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37589250

RESUMO

Alternative to current liquid amine technologies for post-combustion CO2 capture, new technologies such as adsorbent-based processes are developed, wherein material lifetime and degradation is important. Herein a robust method to determine degradation rates in a laboratory setup is developed, which was validated with a continuous multi-staged fluidized bed pilot plant designed to capture 1 ton CO2 per day. An amine functionalized polystyrene adsorbent showed very good agreement between the experimental 1000-hour laboratory degradation rates and 2200 hours of degradation in a pilot plant. This validates how laboratory experiments can be extrapolated for sorbent screening and for scale-up. Resulting, the oxidative degradation in the desorber at high temperatures (120 °C) and low O2 concentrations (150 ppmv) is 3 times higher compared to the adsorber at low temperatures and high O2 (56 °C, 7 vol %). Laboratory degradation experiments can hence be used to further optimize process operations to limit degradation or screen for potential new adsorbents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...