Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 12(3)2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35327638

RESUMO

Amyloid formation is a pathological process associated with a wide range of degenerative disorders, including Alzheimer's disease, Parkinson's disease, and diabetes mellitus type 2. During disease progression, abnormal accumulation and deposition of proteinaceous material are accompanied by tissue degradation, inflammation, and dysfunction. Agents that can interfere with the process of amyloid formation or target already formed amyloid assemblies are consequently of therapeutic interest. In this context, a few endogenous proteins have been associated with an anti-amyloidogenic activity. Here, we review the properties of transthyretin, apolipoprotein E, clusterin, and BRICHOS protein domain which all effectively interfere with amyloid in vitro, as well as displaying a clinical impact in humans or animal models. Their involvement in the amyloid formation process is discussed, which may aid and inspire new strategies for therapeutic interventions.


Assuntos
Doença de Alzheimer , Amiloidose , Doença de Parkinson , Amiloide/metabolismo , Peptídeos beta-Amiloides , Proteínas Amiloidogênicas/metabolismo , Animais , Humanos , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo
2.
Biomolecules ; 11(3)2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802170

RESUMO

Amyloid-formation by the islet amyloid polypeptide (IAPP), produced by the ß-cells in the human pancreas, has been associated with the development of type II diabetes mellitus (T2DM). The human plasma-protein transthyretin (TTR), a well-known amyloid-inhibiting protein, is interestingly also expressed within the IAPP producing ß-cells. In the present study, we have characterized the ability of TTR to interfere with IAPP amyloid-formation, both in terms of its intrinsic stability as well as with regard to the effect of TTR-stabilizing drugs. The results show that TTR can prolong the lag-phase as well as impair elongation in the course of IAPP-amyloid formation. We also show that the interfering ability correlates inversely with the thermodynamic stability of TTR, while no such correlation was observed as a function of kinetic stability. Furthermore, we demonstrate that the ability of TTR to interfere is maintained also at the low pH environment within the IAPP-containing granules of the pancreatic ß-cells. However, at both neutral and low pH, the addition of TTR-stabilizing drugs partly impaired its efficacy. Taken together, these results expose mechanisms of TTR-mediated inhibition of IAPP amyloid-formation and highlights a potential therapeutic target to prevent the onset of T2DM.


Assuntos
Polipeptídeo Amiloide das Ilhotas Pancreáticas/antagonistas & inibidores , Pré-Albumina/metabolismo , Benzotiazóis/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Pré-Albumina/química , Estabilidade Proteica
3.
J Org Chem ; 85(21): 14174-14189, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33099999

RESUMO

A BF3·OEt2 catalyzed intramolecular Povarov reaction was used to synthesize 15 chromenopyridine fused thiazolino-2-pyridone peptidomimetics. The reaction works with several O-alkylated salicylaldehydes and amino functionalized thiazolino-2-pyridones, to generate polyheterocycles with diverse substitution. The synthesized compounds were screened for their ability to bind α-synuclein and amyloid ß fibrils in vitro. Analogues substituted with a nitro group bind to mature amyloid fibrils, and the activity moreover depends on the positioning of this functional group.


Assuntos
Amiloide , alfa-Sinucleína , Peptídeos beta-Amiloides , Piridonas
4.
Biomolecules ; 10(1)2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31947546

RESUMO

Apolipoprotein E (ApoE) has become a primary focus of research after the discovery of its strong linkage to Alzheimer's disease (AD), where the ApoE4 variant is the highest genetic risk factor for this disease. ApoE is commonly found in amyloid deposits of different origins, and its interaction with amyloid-ß peptide (Aß), the hallmark of AD, is well known. However, studies on the interaction of ApoEs with other amyloid-forming proteins are limited. Islet amyloid polypeptide (IAPP) is an amyloid-forming peptide linked to the development of type-2 diabetes and has also been shown to be involved in AD pathology and vascular dementia. Here we studied the impact of ApoE on IAPP aggregation and IAPP-induced toxicity on blood vessel pericytes. Using both in vitro and cell-based assays, we show that ApoE efficiently inhibits the amyloid formation of IAPP at highly substoichiometric ratios and that it interferes with both nucleation and elongation. We also show that ApoE protects the pericytes against IAPP-induced toxicity, however, the ApoE4 variant displays the weakest protective potential. Taken together, our results suggest that ApoE has a generic amyloid-interfering property and can be protective against amyloid-induced cytotoxicity, but there is a loss of function for the ApoE4 variant.


Assuntos
Amiloide/metabolismo , Apolipoproteínas E/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Pericitos/metabolismo , Agregação Patológica de Proteínas/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Apolipoproteína E4/metabolismo , Linhagem Celular , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Humanos , Pericitos/patologia , Agregados Proteicos , Agregação Patológica de Proteínas/patologia
5.
FEBS J ; 287(6): 1208-1219, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31571352

RESUMO

Alzheimer's disease (AD) is strongly linked to amyloid depositions of the Aß peptide (Aß). The lipid-binding protein apolipoprotein E (ApoE) has been found to interfere with Aß amyloid formation and to exert a strong clinical impact to the pathology of AD. The APOE gene exists in three allelic isoforms represented by APOE ε2, APOE ε3, and APOE ε4. Carriers of the APOE ε4 variant display a gene dose-dependent increased risk of developing the disease. Aß amyloids are formed via a nucleation-dependent mechanism where free monomers are added onto a nucleus in a template-dependent manner. Using a combination of surface plasmon resonance and thioflavin-T assays, we here show that ApoE can target the process of fibril elongation and that its interference effectively prevents amyloid maturation. We expose a complex equilibrium where the concentration of ApoE, Aß monomers, and the amount of already formed Aß fibrils will affect the relative proportion and formation rate of mature amyloids versus alternative assemblies. The result illustrates a mechanism which may affect both the clearance rate of Aß assemblies in vivo and the population of cytotoxic Aß assemblies.


Assuntos
Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Apolipoproteína E4/química , Benzotiazóis/química , Corantes Fluorescentes/química , Humanos , Tamanho da Partícula , Ressonância de Plasmônio de Superfície , Propriedades de Superfície
6.
BMC Biotechnol ; 19(1): 97, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31829176

RESUMO

BACKGROUND: Immunogold labeling in combination with transmission electron microscopy analysis is a technique frequently used to correlate high-resolution morphology studies with detailed information regarding localization of specific antigens. Although powerful, the methodology has limitations and it is frequently difficult to acquire a stringent system where unspecific low-affinity interactions are removed prior to analysis. RESULTS: We here describe a combinatorial strategy where surface plasmon resonance and immunogold labeling are used followed by a direct analysis of the sensor-chip surface by scanning electron microscopy. Using this approach, we have probed the interaction between amyloid-ß fibrils, associated to Alzheimer's disease, and apolipoprotein E, a well-known ligand frequently found co-deposited to the fibrillar form of Aß in vivo. The results display a lateral binding of ApoE along the amyloid fibrils and illustrates how the gold-beads represent a good reporter of the binding. CONCLUSIONS: This approach exposes a technique with generic features which enables both a quantitative and a morphological evaluation of a ligand-receptor based system. The methodology mediates an advantage compared to traditional immunogold labeling since all washing steps can be monitored and where a high stringency can be maintained throughout the experiment.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Apolipoproteínas E/metabolismo , Imuno-Histoquímica/métodos , Microscopia Eletrônica de Varredura/métodos , Ressonância de Plasmônio de Superfície/métodos , Peptídeos beta-Amiloides/química , Apolipoproteínas E/química , Humanos , Ligação Proteica
7.
Med Sci (Basel) ; 6(4)2018 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-30477187

RESUMO

Phospholipids (PLs), key elements of cellular membranes, are regulated reciprocally with membrane proteins and can act as sensors for alterations in physiological or pathological states of cells including initiation and development of cancer. On the other hand, peripheral blood mononuclear cells (MNCs) play an important role in antitumor immune response by reacting to cancerous modifications in distant organs. In the current study, we tested the hypothesis that tumor initiation and development are reflected in the alteration pattern of the MNC PL component. We analyzed MNC membrane PL fractions in samples from healthy individuals and from patients with diverse types of cancers to reveal possible alterations induced by malignancy. Compared to healthy controls, the cancer samples demonstrated shifts in several membrane PL profiles. In particular, when analyzing cancer data pooled together, there were significantly higher levels in lysophosphatidylcholine, phosphatidylcholine, and phosphatidylethanolamine fractions, and significantly lower quantities in phosphatidylinositol, phosphatidylserine, and phosphatidic acid fractions in cancer samples compared to controls. The levels of sphingomyelins and diphosphatidylglycerols were relatively unaffected. Most of the differences in PLs were sustained during the analysis of individual cancers such as breast cancer and chronic lymphocytic leukemia. Our findings suggest the presence of a common pattern of changes in MNC PLs during malignancy.

8.
Data Brief ; 19: 1166-1170, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30228999

RESUMO

We demonstrate the use of Scanning Electron microscopy (SEM) in combination with Surface Plasmon Resonance (SPR) to probe and verify the formation of amyloid and its morphology on an SPR chip. SPR is a technique that measures changes in the immobilized weight on the chip surface and is frequently used to probe the formation and biophysical properties of amyloid structures. In this context it is of interest to also monitor the morphology of the formed structures. The SPR chip surface is made of a layer of gold, which represent a suitable material for direct analysis of the surface using SEM. The standard SPR chip used here (CM5-chip, GE Healthcare, Uppsala, Sweden) can easily be disassembled and directly analyzed by SEM. In order to verify the formation of amyloid fibrils in our experimental conditions we analyzed also in-solution produced structures by using Transmission Electron Microscopy (TEM). For further details and experimental findings, please refer to the article published in Journal of Molecular Biology, (Brännström K. et al., 2018) [1].

9.
J Mol Biol ; 430(17): 2722-2733, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29890120

RESUMO

The pathological Aß aggregates associated with Alzheimer's disease follow a nucleation-dependent path of formation. A nucleus represents an oligomeric assembly of Aß peptides that acts as a template for subsequent incorporation of monomers to form a fibrillar structure. Nuclei can form de novo or via surface-catalyzed secondary nucleation, and the combined rates of elongation and nucleation control the overall rate of fibril formation. Transthyretin (TTR) obstructs Aß fibril formation in favor of alternative non-fibrillar assemblies, but the mechanism behind this activity is not fully understood. This study shows that TTR does not significantly disturb fibril elongation; rather, it effectively interferes with the formation of oligomeric nuclei. We demonstrate that this interference can be modulated by altering the relative contribution of elongation and nucleation, and we show how TTR's effects can range from being essentially ineffective to almost complete inhibition of fibril formation without changing the concentration of TTR or monomeric Aß.


Assuntos
Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Pré-Albumina/metabolismo , Agregados Proteicos , Multimerização Proteica , Humanos , Cinética , Ligação Proteica
10.
J Mol Biol ; 430(13): 1940-1949, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29751013

RESUMO

Fibril formation of the amyloid-ß peptide (Aß) follows a nucleation-dependent polymerization process and is associated with Alzheimer's disease. Several different lengths of Aß are observed in vivo, but Aß1-40 and Aß1-42 are the dominant forms. The fibril architectures of Aß1-40 and Aß1-42 differ and Aß1-42 assemblies are generally considered more pathogenic. We show here that monomeric Aß1-42 can be cross-templated and incorporated into the ends of Aß1-40 fibrils, while incorporation of Aß1-40 monomers into Aß1-42 fibrils is very poor. We also show that via cross-templating incorporated Aß monomers acquire the properties of the parental fibrils. The suppressed ability of Aß1-40 to incorporate into the ends of Aß1-42 fibrils and the capacity of Aß1-42 monomers to adopt the properties of Aß1-40 fibrils may thus represent two mechanisms reducing the total load of fibrils having the intrinsic, and possibly pathogenic, features of Aß1-42 fibrils in vivo. We also show that the transfer of fibrillar properties is restricted to fibril-end templating and does not apply to cross-nucleation via the recently described path of surface-catalyzed secondary nucleation, which instead generates similar structures to those acquired via de novo primary nucleation in the absence of catalyzing seeds. Taken together these results uncover an intrinsic barrier that prevents Aß1-40 from adopting the fibrillar properties of Aß1-42 and exposes that the transfer of properties between amyloid-ß fibrils are determined by their path of formation.


Assuntos
Peptídeos beta-Amiloides/química , Amiloide/química , Fragmentos de Peptídeos/química , Humanos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Multimerização Proteica
11.
J Med Chem ; 58(16): 6507-15, 2015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-26214366

RESUMO

The plasma protein transthyretin (TTR) is linked to human amyloidosis. Dissociation of its native tetrameric assembly is a rate-limiting step in the conversion from a native structure into a pathological amyloidogenic fold. Binding of small molecule ligands within the thyroxine binding site of TTR can stabilize the tetrameric integrity and is a potential therapeutic approach. However, through the characterization of nine different tetramer-stabilizing ligands we found that unspecific binding to plasma components might significantly compromise ligand efficacy. Surprisingly the binding strength between a particular ligand and TTR does not correlate well with its selectivity in plasma. However, through analysis of the thermodynamic signature using isothermal titration calorimetry we discovered a better correlation between selectivity and the enthalpic component of the interaction. This is of specific interest in the quest for more efficient TTR stabilizers, but a high selectivity is an almost universally desired feature within drug design and the finding might have wide-ranging implications for drug design.


Assuntos
Pré-Albumina/química , Amiloidose/tratamento farmacológico , Calorimetria , Desenho de Fármacos , Humanos , Ligantes , Modelos Moleculares , Plasma/química , Ligação Proteica , Termodinâmica , Difração de Raios X
12.
PLoS One ; 9(3): e90857, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24618582

RESUMO

Antibodies that preferentially and specifically target pathological oligomeric protein and peptide assemblies, as opposed to their monomeric and amyloid counterparts, provide therapeutic and diagnostic opportunities for protein misfolding diseases. Unfortunately, the molecular properties associated with oligomer-specific antibodies are not well understood, and this limits targeted design and development. We present here a generic method that enables the design and optimisation of oligomer-specific antibodies. The method takes a two-step approach where discrimination between oligomers and fibrils is first accomplished through identification of cryptic epitopes exclusively buried within the structure of the fibrillar form. The second step discriminates between monomers and oligomers based on differences in avidity. We show here that a simple divalent mode of interaction, as within e.g. the IgG isotype, can increase the binding strength of the antibody up to 1500 times compared to its monovalent counterpart. We expose how the ability to bind oligomers is affected by the monovalent affinity and the turnover rate of the binding and, importantly, also how oligomer specificity is only valid within a specific concentration range. We provide an example of the method by creating and characterising a spectrum of different monoclonal antibodies against both the Aß peptide and α-synuclein that are associated with Alzheimer's and Parkinson's diseases, respectively. The approach is however generic, does not require identification of oligomer-specific architectures, and is, in essence, applicable to all polypeptides that form oligomeric and fibrillar assemblies.


Assuntos
Anticorpos/imunologia , Epitopos/imunologia , Multimerização Proteica/imunologia , Proteínas/imunologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/imunologia , Animais , Anticorpos Monoclonais/imunologia , Afinidade de Anticorpos/imunologia , Epitopos/química , Feminino , Hipocampo/metabolismo , Hipocampo/patologia , Cinética , Camundongos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Ligação Proteica , Proteínas/química , alfa-Sinucleína/química , alfa-Sinucleína/imunologia , alfa-Sinucleína/metabolismo
13.
Acta Neuropathol ; 127(4): 507-22, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24240735

RESUMO

Pro-inflammatory S100A9 protein is increasingly recognized as an important contributor to inflammation-related neurodegeneration. Here, we provide insights into S100A9 specific mechanisms of action in Alzheimer's disease (AD). Due to its inherent amyloidogenicity S100A9 contributes to amyloid plaque formation together with Aß. In traumatic brain injury (TBI) S100A9 itself rapidly forms amyloid plaques, which were reactive with oligomer-specific antibodies, but not with Aß and amyloid fibrillar antibodies. They may serve as precursor-plaques for AD, implicating TBI as an AD risk factor. S100A9 was observed in some hippocampal and cortical neurons in TBI, AD and non-demented aging. In vitro S100A9 forms neurotoxic linear and annular amyloids resembling Aß protofilaments. S100A9 amyloid cytotoxicity and native S100A9 pro-inflammatory signaling can be mitigated by its co-aggregation with Aß, which results in a variety of micron-scale amyloid complexes. NMR and molecular docking demonstrated transient interactions between native S100A9 and Aß. Thus, abundantly present in AD brain pro-inflammatory S100A9, possessing also intrinsic amyloidogenic properties and ability to modulate Aß aggregation, can serve as a link between the AD amyloid and neuroinflammatory cascades and as a prospective therapeutic target.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Calgranulina B/metabolismo , Placa Amiloide/metabolismo , Adulto , Idoso , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/farmacologia , Encéfalo/efeitos dos fármacos , Lesões Encefálicas/patologia , Calgranulina B/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Neuroblastoma/patologia , Fragmentos de Peptídeos/farmacologia , Placa Amiloide/patologia
14.
Int J Mol Sci ; 13(3): 2893-2917, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22489132

RESUMO

S100A8 and S100A9 are EF-hand Ca(2+) binding proteins belonging to the S100 family. They are abundant in cytosol of phagocytes and play critical roles in numerous cellular processes such as motility and danger signaling by interacting and modulating the activity of target proteins. S100A8 and S100A9 expression levels increased in many types of cancer, neurodegenerative disorders, inflammatory and autoimmune diseases and they are implicated in the numerous disease pathologies. The Ca(2+) and Zn(2+)-binding properties of S100A8/A9 have a pivotal influence on their conformation and oligomerization state, including self-assembly into homo- and heterodimers, tetramers and larger oligomers. Here we review how the unique chemical and conformational properties of individual proteins and their structural plasticity at the quaternary level account for S100A8/A9 functional diversity. Additional functional diversification occurs via non-covalent assembly into oligomeric and fibrillar amyloid complexes discovered in the aging prostate and reproduced in vitro. This process is also regulated by Ca(2+)and Zn(2+)-binding and effectively competes with the formation of the native complexes. High intrinsic amyloid-forming capacity of S100A8/A9 proteins may lead to their amyloid depositions in numerous ailments characterized by their elevated expression patterns and have additional pathological significance requiring further thorough investigation.


Assuntos
Amiloide/metabolismo , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Mediadores da Inflamação/metabolismo , Complexos Multiproteicos/metabolismo , Animais , Calgranulina A/química , Calgranulina B/química , Humanos , Multimerização Proteica
15.
Methods Mol Biol ; 849: 387-401, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22528104

RESUMO

The family of S100 proteins encompasses more than 20 members characterized by remarkable conformational and functional diversity. S100 proteins act as central regulators of various cellular processes, including cell survival, proliferation, differentiation, and motility. Many S100 proteins are implicated in various types of cancer as well as neurodegenerative, inflammatory, and autoimmune diseases. Recently, we have found that S100A8/A9 proteins are involved in amyloidogenic process in the ageing prostate, contributing to the formation of calcified corpora amylacea (CA) inclusions, which commonly accompany age-dependent prostate tissue remodelling and cancer. Amyloid formation by S100A8/A9 proteins can also be modelled in vitro. Amyloid assembly of S100A8/A9 proteins into oligomeric and fibrillar complexes is modulated by metal ions such as calcium and zinc. Here, we provide insights into the extraction procedures and review the common structural features of ex vivo and in vitro S100A8/A9 amyloids, showing that they share the same generic origin.


Assuntos
Envelhecimento/metabolismo , Amiloide/química , Calgranulina A/química , Calgranulina B/química , Próstata/metabolismo , Multimerização Proteica , Envelhecimento/patologia , Amiloide/isolamento & purificação , Benzotiazóis , Western Blotting , Calgranulina A/isolamento & purificação , Calgranulina B/isolamento & purificação , Cromatografia Líquida , Humanos , Masculino , Próstata/patologia , Estrutura Secundária de Proteína , Espectrometria de Massas por Ionização por Electrospray , Coloração e Rotulagem , Tiazóis/metabolismo
16.
J Mol Biol ; 414(5): 699-712, 2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-21986202

RESUMO

Parkinson's disease is a common neurodegenerative disorder characterized by α-synuclein (α-Syn)-containing Lewy body formation and selective loss of dopaminergic neurons in the substantia nigra. We have demonstrated the modulating effect of noopept, a novel proline-containing dipeptide drug with nootropic and neuroprotective properties, on α-Syn oligomerization and fibrillation by using thioflavin T fluorescence, far-UV CD, and atomic force microscopy techniques. Noopept does not bind to a sterically specific site in the α-Syn molecule as revealed by heteronuclear two-dimensional NMR analysis, but due to hydrophobic interactions with toxic amyloid oligomers, it prompts their rapid sequestration into larger fibrillar amyloid aggregates. Consequently, this process rescues the cytotoxic effect of amyloid oligomers on neuroblastoma SH-SY5Y cells as demonstrated by using cell viability assays and fluorescent staining of apoptotic and necrotic cells and by assessing the level of intracellular oxidative stress. The mitigating effect of noopept against amyloid oligomeric cytotoxicity may offer additional benefits to the already well-established therapeutic functions of this new pharmaceutical.


Assuntos
Amiloide/antagonistas & inibidores , Dipeptídeos/farmacologia , Fármacos Neuroprotetores/farmacologia , Nootrópicos/farmacologia , Polimerização/efeitos dos fármacos , alfa-Sinucleína/antagonistas & inibidores , Amiloide/química , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Estresse Oxidativo/efeitos dos fármacos , alfa-Sinucleína/química
17.
J Mol Biol ; 365(5): 1337-49, 2007 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-17134716

RESUMO

Among the newly discovered amyloid properties, its cytotoxicity plays a key role. Lysozyme is a ubiquitous protein involved in systemic amyloidoses in vivo and forming amyloid under destabilising conditions in vitro. We characterized both oligomers and fibrils of hen lysozyme by atomic force microscopy and demonstrated their dose (5-50 microM) and time-dependent (6-48 h) effect on neuroblastoma SH-SY5Y cell viability. We revealed that fibrils induce a decrease of cell viability after 6 h due to membrane damage shown by inhibition of WST-1 reduction, early lactate dehydrogenase release, and propidium iodide intake; by contrast, oligomers activate caspases after 6 h but cause the cell viability to decline only after 48 h, as shown by fluorescent-labelled annexin V binding to externalized phosphatidylserine, propidium iodide DNA staining, lactate dehydrogenase release, and by typical apoptotic shrinking of cells. We conclude that oligomers induce apoptosis-like cell death, while the fibrils lead to necrosis-like death. As polymorphism is a common property of an amyloid, we demonstrated that it is not a single uniform species but rather a continuum of cross-beta-sheet-containing amyloids that are cytotoxic. An abundance of lysozyme highlights a universal feature of this phenomenon, indicating that amyloid toxicity should be assessed in all clinical applications involving proteinaceous materials.


Assuntos
Amiloide/farmacologia , Apoptose/efeitos dos fármacos , Muramidase/farmacologia , Necrose , Amiloide/isolamento & purificação , Amiloide/ultraestrutura , Animais , Anexina A5/metabolismo , Caspases/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Eletroforese em Gel de Poliacrilamida , Fluorescência , Interações Hidrofóbicas e Hidrofílicas , Cinética , L-Lactato Desidrogenase/metabolismo , Microscopia de Força Atômica , Muramidase/isolamento & purificação , Muramidase/ultraestrutura , Oxirredução/efeitos dos fármacos , Estrutura Quaternária de Proteína , Solubilidade/efeitos dos fármacos , Sais de Tetrazólio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...