Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Comput Methods Programs Biomed ; 225: 107015, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35914439

RESUMO

BACKGROUND AND OBJECTIVE: Vessel segmentation is the first processing stage of 3D medical images for both clinical and research use. Current segmentation methods are tedious and time consuming, requiring significant manual correction and hence are infeasible to use in large data sets. METHODS: Here, we review and analyse available coronary artery segmentation methods, focusing on fully automated methods capable of handling the rapidly growing medical images available. All manuscripts published since 2010 are systematically reviewed, categorised into different groups based on the approach taken, and characteristics of the different approaches as well as trends over the past decade are explored. RESULTS: The manuscripts were divided intro three broad categories, consisting of region growing, voxelwise prediction and partitioning approaches. The most common approach overall was region growing, particularly using active contour models, however these have had a sharp fall in popularity in recent years with convolutional neural networks becoming significantly more popular. CONCLUSIONS: The systematic review of current coronary artery segmentation methods shows interesting trends, with rising popularity of machine learning methods, a focus on efficient methods, and falling popularity of computationally expensive processing steps such as vesselness and multiplanar reformation.


Assuntos
Vasos Coronários , Redes Neurais de Computação , Vasos Coronários/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Aprendizado de Máquina
2.
Comput Methods Programs Biomed ; 225: 107013, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35901629

RESUMO

BACKGROUND AND OBJECTIVE: Haemodynamic metrics, such as blood flow induced shear stresses at the inner vessel lumen, are associated with the development and progression of coronary artery disease. Understanding these metrics may therefore improve the assessment of an individual's coronary disease risk. However, the calculation of such luminal Wall Shear Stress (WSS) using traditional Computational Fluid Dynamics (CFD) methods is relatively slow and computationally expensive. As a result, CFD based haemodynamic computation is not suitable for integrated and large-scale use in clinical settings. METHODS: In this work, deep learning techniques are proposed as an alternative method to CFD, whereby luminal WSS magnitude can be predicted in coronary bifurcations throughout the cardiac cycle based on the steady state solution (which takes <120 seconds to calculate including preprocessing), vessel geometry and additional global features. The deep learning model is trained on a dataset of 101 patient-specific and 2626 synthetic left main bifurcation models with 26 separate patient-specific cases used as the test set. RESULTS: The model showed high fidelity predictions with <5% (normalised against mean WSS magnitude) deviation to CFD derived values as the gold-standard method, while being orders of magnitude faster with on average <2 minutes versus 3 hours computation for transient CFD. CONCLUSIONS: This method therefore offers a new approach to substantially reduce the computational cost involved in, for example, large-scale population studies of coronary haemodynamic metrics, and may therefore open the pathway for future clinical integration.


Assuntos
Hidrodinâmica , Modelos Cardiovasculares , Velocidade do Fluxo Sanguíneo/fisiologia , Simulação por Computador , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/fisiologia , Humanos , Redes Neurais de Computação , Resistência ao Cisalhamento , Estresse Mecânico
3.
BMJ Open ; 12(6): e054881, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725256

RESUMO

INTRODUCTION: Coronary artery disease (CAD) is the leading cause of death worldwide. More than a quarter of cardiovascular events are unexplained by current absolute cardiovascular disease risk calculators, and individuals without clinical risk factors have been shown to have worse outcomes. The 'anatomy of risk' hypothesis recognises that adverse anatomical features of coronary arteries enhance atherogenic haemodynamics, which in turn mediate the localisation and progression of plaques. We propose a new risk prediction method predicated on CT coronary angiography (CTCA) data and state-of-the-art machine learning methods based on a better understanding of anatomical risk for CAD. This may open new pathways in the early implementation of personalised preventive therapies in susceptible individuals as a potential key in addressing the growing burden of CAD. METHODS AND ANALYSIS: GeoCAD is a retrospective cohort study in 1000 adult patients who have undergone CTCA for investigation of suspected CAD. It is a proof-of-concept study to test the hypothesis that advanced image-derived patient-specific data can accurately predict long-term cardiovascular events. The objectives are to (1) profile CTCA images with respect to variations in anatomical shape and associated haemodynamic risk expressing, at least in part, an individual's CAD risk, (2) develop a machine-learning algorithm for the rapid assessment of anatomical risk directly from unprocessed CTCA images and (3) to build a novel CAD risk model combining traditional risk factors with these novel anatomical biomarkers to provide a higher accuracy CAD risk prediction tool. ETHICS AND DISSEMINATION: The study protocol has been approved by the St Vincent's Hospital Human Research Ethics Committee, Sydney-2020/ETH02127 and the NSW Population and Health Service Research Ethics Committee-2021/ETH00990. The project outcomes will be published in peer-reviewed and biomedical journals, scientific conferences and as a higher degree research thesis.


Assuntos
Doença da Artéria Coronariana , Adulto , Estudos de Coortes , Angiografia por Tomografia Computadorizada , Angiografia Coronária/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Humanos , Valor Preditivo dos Testes , Estudos Retrospectivos
4.
Comput Med Imaging Graph ; 97: 102049, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35334316

RESUMO

Cardiovascular disease is a major cause of death worldwide. Computed Tomography Coronary Angiography (CTCA) is a non-invasive method used to evaluate coronary artery disease, as well as evaluating and reconstructing heart and coronary vessel structures. Reconstructed models have a wide array of for educational, training and research applications such as the study of diseased and non-diseased coronary anatomy, machine learning based disease risk prediction and in-silico and in-vitro testing of medical devices. However, coronary arteries are difficult to image due to their small size, location, and movement, causing poor resolution and artefacts. Segmentation of coronary arteries has traditionally focused on semi-automatic methods where a human expert guides the algorithm and corrects errors, which severely limits large-scale applications and integration within clinical systems. International challenges aiming to overcome this barrier have focussed on specific tasks such as centreline extraction, stenosis quantification, and segmentation of specific artery segments only. Here we present the results of the first challenge to develop fully automatic segmentation methods of full coronary artery trees and establish the first large standardized dataset of normal and diseased arteries. This forms a new automated segmentation benchmark allowing the automated processing of CTCAs directly relevant for large-scale and personalized clinical applications.


Assuntos
Doença da Artéria Coronariana , Vasos Coronários , Algoritmos , Angiografia por Tomografia Computadorizada , Angiografia Coronária/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Vasos Coronários/diagnóstico por imagem , Humanos , Tomografia Computadorizada por Raios X/métodos
5.
Sci Rep ; 12(1): 865, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039557

RESUMO

Severe coronary tortuosity has previously been linked to low shear stresses at the luminal surface, yet this relationship is not fully understood. Several previous studies considered different tortuosity metrics when exploring its impact of on the wall shear stress (WSS), which has likely contributed to the ambiguous findings in the literature. Here, we aim to analyze different tortuosity metrics to determine a benchmark for the highest correlating metric with low time-averaged WSS (TAWSS). Using Computed Tomography Coronary Angiogram (CTCA) data from 127 patients without coronary artery disease, we applied all previously used tortuosity metrics to the left main coronary artery bifurcation, and to its left anterior descending and left circumflex branches, before modelling their TAWSS using computational fluid dynamics (CFD). The tortuosity measures included tortuosity index, average absolute-curvature, root-mean-squared (RMS) curvature, and average squared-derivative-curvature. Each tortuosity measure was then correlated with the percentage of vessel area that showed a < 0.4 Pa TAWSS, a threshold associated with altered endothelial cell cytoarchitecture and potentially higher disease risk. Our results showed a stronger correlation between curvature-based versus non-curvature-based tortuosity measures and low TAWSS, with the average-absolute-curvature showing the highest coefficient of determination across all left main branches (p < 0.001), followed by the average-squared-derivative-curvature (p = 0.001), and RMS-curvature (p = 0.002). The tortuosity index, the most widely used measure in literature, showed no significant correlation to low TAWSS (p = 0.86). We thus recommend the use of average-absolute-curvature as a tortuosity measure for future studies.


Assuntos
Simulação por Computador , Anomalias dos Vasos Coronários/patologia , Vasos Coronários/patologia , Angiografia Coronária , Anomalias dos Vasos Coronários/diagnóstico por imagem , Vasos Coronários/diagnóstico por imagem , Humanos , Sensibilidade e Especificidade , Resistência ao Cisalhamento , Tomografia Computadorizada por Raios X
7.
J Biomech ; 125: 110575, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34186293

RESUMO

Stents are scaffolding cardiovascular implants used to restore blood flow in narrowed arteries. However, the presence of the stent alters local blood flow and shear stresses on the surrounding arterial wall, which can cause adverse tissue responses and increase the risk of adverse outcomes. There is a need for optimization of stent designs for hemodynamic performance. We used multi-objective optimization to identify ideal combinations of design variables by assessing potential trade-offs based on common hemodynamic indices associated with clinical risk and mechanical performance of the stents. We studied seven design variables including strut cross-section, strut dimension, strut angle, cell alignment, cell height, connector type and connector arrangement. Optimization objectives were the percentage of vessel area exposed to adversely low time averaged WSS (TAWSS) and adversely high Wall Shear Stress (WSS) assessed using computational fluid dynamics modeling, as well as radial stiffness of the stent using FEA simulation. Two multi-objective optimization algorithms were used and compared to iteratively predict ideal designs. Out of 50 designs, three best designs with respect to each of the three objectives, and two designs in regard to overall performance were identified.


Assuntos
Artérias , Stents , Simulação por Computador , Hemodinâmica , Modelos Cardiovasculares , Desenho de Prótese , Estresse Mecânico
8.
Ann Biomed Eng ; 49(7): 1598-1618, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34002286

RESUMO

3D printing as a means of fabrication has seen increasing applications in medicine in the last decade, becoming invaluable for cardiovascular applications. This rapidly developing technology has had a significant impact on cardiovascular research, its clinical translation and education. It has expanded our understanding of the cardiovascular system resulting in better devices, tools and consequently improved patient outcomes. This review discusses the latest developments and future directions of generating medical replicas ('phantoms') for use in the cardiovascular field, detailing the end-to-end process from medical imaging to capture structures of interest, to production and use of 3D printed models. We provide comparisons of available imaging modalities and overview of segmentation and post-processing techniques to process images for printing, detailed exploration of latest 3D printing methods and materials, and a comprehensive, up-to-date review of milestone applications and their impact within the cardiovascular domain across research, clinical use and education. We then provide an in-depth exploration of future technologies and innovations around these methods, capturing opportunities and emerging directions across increasingly realistic representations, bioprinting and tissue engineering, and complementary virtual and mixed reality solutions. The next generation of 3D printing techniques allow patient-specific models that are increasingly realistic, replicating properties, anatomy and function.


Assuntos
Bioimpressão , Coração , Impressão Tridimensional , Engenharia Tecidual , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...