Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 6277, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28740227

RESUMO

Sb-doped Bi2Te3 is known since the 1950s as the best thermoelectric material for near-room temperature operation. Improvements in material performance are expected from nanostructuring procedures. We present a straightforward and fast method to synthesize already nanostructured pellets that show an enhanced ZT due to a remarkably low thermal conductivity and unusually high Seebeck coefficient for a nominal composition optimized for arc-melting: Bi0.35Sb1.65Te3. We provide a detailed structural analysis of the Bi2-xSbxTe3 series (0 ≤ x ≤ 2) based on neutron powder diffraction as a function of composition and temperature that reveals the important role played by atomic vibrations. Arc-melting produces layered platelets with less than 50 nm-thick sheets. The low thermal conductivity is attributed to the phonon scattering at the grain boundaries of the nanosheets. This is a fast and cost-effective production method of highly efficient thermoelectric materials.

2.
Sci Rep ; 6: 26774, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27251233

RESUMO

Thermoelectric materials may contribute in the near future as new alternative sources of sustainable energy. Unprecedented thermoelectric properties in p-type SnSe single crystals have been recently reported, accompanied by extremely low thermal conductivity in polycrystalline samples. In order to enhance thermoelectric efficiency through proper tuning of this material we report a full structural characterization and evaluation of the thermoelectric properties of novel Ge-doped SnSe prepared by a straightforward arc-melting method, which yields nanostructured polycrystalline samples. Ge does not dope the system in the sense of donating carriers, yet the electrical properties show a semiconductor behavior with resistivity values higher than that of the parent compound, as a consequence of nanostructuration, whereas the Seebeck coefficient is higher and thermal conductivity lower, favorable to a better ZT figure of merit.

3.
Nanoscale Res Lett ; 11(1): 142, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26976428

RESUMO

Thermoelectric materials constitute an alternative source of sustainable energy, harvested from waste heat. Bi2Te3 is the most utilized thermoelectric alloy. We show that it can be readily prepared in nanostructured form by arc-melting synthesis, yielding mechanically robust pellets of highly oriented polycrystals. This material has been characterized by neutron powder diffraction (NPD), scanning electron microscopy (SEM), and electronic and thermal transport measurements. A microscopic analysis from NPD data demonstrates a near-perfect stoichiometry of Bi2Te3 and a fair amount of anharmonicity of the chemical bonds. The as-grown material presents a metallic behavior, showing a record-low resistivity at 320 K of 2 µΩ m, which is advantageous for its performance as a thermoelectric material. SEM analysis shows a stacking of nanosized sheets, each of them presumably single-crystalline, with large surfaces perpendicular to the c crystallographic axis. This nanostructuration notably affects the thermoelectric properties, involving many surface boundaries that are responsible for large phonon scattering factors, yielding a thermal conductivity as low as 1.2 W m(-1) K(-1) around room temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...