Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
AMIA Jt Summits Transl Sci Proc ; 2024: 135-144, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827099

RESUMO

Radiology Imaging plays a pivotal role in medical diagnostics, providing clinicians with insights into patient health and guiding the next steps in treatment. The true value of a radiological image lies in the accuracy of its accompanying report. To ensure the reliability of these reports, they are often cross-referenced with operative findings. The conventional method of manually comparing radiology and operative reports is labor-intensive and demands specialized knowledge. This study explores the potential of a Large Language Model (LLM) to simplify the radiology evaluation process by automatically extracting pertinent details from these reports, focusing especially on the shoulder's primary anatomical structures. A fine-tuned LLM identifies mentions of the supraspinatus tendon, infraspinatus tendon, subscapularis tendon, biceps tendon, and glenoid labrum in lengthy radiology and operative documents. Initial findings emphasize the model's capability to pinpoint relevant data, suggesting a transformative approach to the typical evaluation methods in radiology.

2.
PLoS One ; 19(4): e0300570, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578822

RESUMO

OBJECTIVE: To create a data-driven definition of post-COVID conditions (PCC) by directly measure changes in symptomatology before and after a first COVID episode. MATERIALS AND METHODS: Retrospective cohort study using Optum® de-identified Electronic Health Record (EHR) dataset from the United States of persons of any age April 2020-September 2021. For each person with COVID (ICD-10-CM U07.1 "COVID-19" or positive test result), we selected up to 3 comparators. The final COVID symptom score was computed as the sum of new diagnoses weighted by each diagnosis' ratio of incidence in COVID group relative to comparator group. For the subset of COVID cases diagnosed in September 2021, we compared the incidence of PCC using our data-driven definition with ICD-10-CM code U09.9 "Post-COVID Conditions", first available in the US October 2021. RESULTS: The final cohort contained 588,611 people with COVID, with mean age of 48 years and 38% male. Our definition identified 20% of persons developed PCC in follow-up. PCC incidence increased with age: (7.8% of persons aged 0-17, 17.3% aged 18-64, and 33.3% aged 65+) and did not change over time (20.0% among persons diagnosed with COVID in 2020 versus 20.3% in 2021). For cases diagnosed in September 2021, our definition identified 19.0% with PCC in follow-up as compared to 2.9% with U09.9 code in follow-up. CONCLUSION: Symptom and U09.9 code-based definitions alone captured different populations. Maximal capture may consider a combined approach, particularly before the availability and routine utilization of specific ICD-10 codes and with the lack consensus-based definitions on the syndrome.


Assuntos
COVID-19 , Humanos , Masculino , Estados Unidos/epidemiologia , Pessoa de Meia-Idade , Feminino , COVID-19/epidemiologia , Registros Eletrônicos de Saúde , Síndrome de COVID-19 Pós-Aguda , Estudos Retrospectivos , Classificação Internacional de Doenças
3.
Crit Care Med ; 51(12): 1802-1811, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37855659

RESUMO

OBJECTIVES: To develop the International Cardiac Arrest Research (I-CARE), a harmonized multicenter clinical and electroencephalography database for acute hypoxic-ischemic brain injury research involving patients with cardiac arrest. DESIGN: Multicenter cohort, partly prospective and partly retrospective. SETTING: Seven academic or teaching hospitals from the United States and Europe. PATIENTS: Individuals 16 years old or older who were comatose after return of spontaneous circulation following a cardiac arrest who had continuous electroencephalography monitoring were included. INTERVENTIONS: Not applicable. MEASUREMENTS AND MAIN RESULTS: Clinical and electroencephalography data were harmonized and stored in a common Waveform Database-compatible format. Automated spike frequency, background continuity, and artifact detection on electroencephalography were calculated with 10-second resolution and summarized hourly. Neurologic outcome was determined at 3-6 months using the best Cerebral Performance Category (CPC) scale. This database includes clinical data and 56,676 hours (3.9 terabytes) of continuous electroencephalography data for 1,020 patients. Most patients died ( n = 603, 59%), 48 (5%) had severe neurologic disability (CPC 3 or 4), and 369 (36%) had good functional recovery (CPC 1-2). There is significant variability in mean electroencephalography recording duration depending on the neurologic outcome (range, 53-102 hr for CPC 1 and CPC 4, respectively). Epileptiform activity averaging 1 Hz or more in frequency for at least 1 hour was seen in 258 patients (25%) (19% for CPC 1-2 and 29% for CPC 3-5). Burst suppression was observed for at least 1 hour in 207 (56%) and 635 (97%) patients with CPC 1-2 and CPC 3-5, respectively. CONCLUSIONS: The I-CARE consortium electroencephalography database provides a comprehensive real-world clinical and electroencephalography dataset for neurophysiology research of comatose patients after cardiac arrest. This dataset covers the spectrum of abnormal electroencephalography patterns after cardiac arrest, including epileptiform patterns and those in the ictal-interictal continuum.


Assuntos
Coma , Parada Cardíaca , Humanos , Adolescente , Coma/diagnóstico , Estudos Retrospectivos , Estudos Prospectivos , Parada Cardíaca/diagnóstico , Eletroencefalografia
4.
medRxiv ; 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37693458

RESUMO

Objective: To develop a harmonized multicenter clinical and electroencephalography (EEG) database for acute hypoxic-ischemic brain injury research involving patients with cardiac arrest. Design: Multicenter cohort, partly prospective and partly retrospective. Setting: Seven academic or teaching hospitals from the U.S. and Europe. Patients: Individuals aged 16 or older who were comatose after return of spontaneous circulation following a cardiac arrest who had continuous EEG monitoring were included. Interventions: not applicable. Measurements and Main Results: Clinical and EEG data were harmonized and stored in a common Waveform Database (WFDB)-compatible format. Automated spike frequency, background continuity, and artifact detection on EEG were calculated with 10 second resolution and summarized hourly. Neurological outcome was determined at 3-6 months using the best Cerebral Performance Category (CPC) scale. This database includes clinical and 56,676 hours (3.9 TB) of continuous EEG data for 1,020 patients. Most patients died (N=603, 59%), 48 (5%) had severe neurological disability (CPC 3 or 4), and 369 (36%) had good functional recovery (CPC 1-2). There is significant variability in mean EEG recording duration depending on the neurological outcome (range 53-102h for CPC 1 and CPC 4, respectively). Epileptiform activity averaging 1 Hz or more in frequency for at least one hour was seen in 258 (25%) patients (19% for CPC 1-2 and 29% for CPC 3-5). Burst suppression was observed for at least one hour in 207 (56%) and 635 (97%) patients with CPC 1-2 and CPC 3-5, respectively. Conclusions: The International Cardiac Arrest Research (I-CARE) consortium database provides a comprehensive real-world clinical and EEG dataset for neurophysiology research of comatose patients after cardiac arrest. This dataset covers the spectrum of abnormal EEG patterns after cardiac arrest, including epileptiform patterns and those in the ictal-interictal continuum.

5.
Neurology ; 101(9): e940-e952, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37414565

RESUMO

BACKGROUND AND OBJECTIVES: Epileptiform activity and burst suppression are neurophysiology signatures reflective of severe brain injury after cardiac arrest. We aimed to delineate the evolution of coma neurophysiology feature ensembles associated with recovery from coma after cardiac arrest. METHODS: Adults in acute coma after cardiac arrest were included in a retrospective database involving 7 hospitals. The combination of 3 quantitative EEG features (burst suppression ratio [BSup], spike frequency [SpF], and Shannon entropy [En]) was used to define 5 distinct neurophysiology states: epileptiform high entropy (EHE: SpF ≥4 per minute and En ≥5); epileptiform low entropy (ELE: SpF ≥4 per minute and <5 En); nonepileptiform high entropy (NEHE: SpF <4 per minute and ≥5 En); nonepileptiform low entropy (NELE: SpF <4 per minute and <5 En), and burst suppression (BSup ≥50% and SpF <4 per minute). State transitions were measured at consecutive 6-hour blocks between 6 and 84 hours after return of spontaneous circulation. Good neurologic outcome was defined as best cerebral performance category 1-2 at 3-6 months. RESULTS: One thousand thirty-eight individuals were included (50,224 hours of EEG), and 373 (36%) had good outcome. Individuals with EHE state had a 29% rate of good outcome, while those with ELE had 11%. Transitions out of an EHE or BSup state to an NEHE state were associated with good outcome (45% and 20%, respectively). No individuals with ELE state lasting >15 hours had good recovery. DISCUSSION: Transition to high entropy states is associated with an increased likelihood of good outcome despite preceding epileptiform or burst suppression states. High entropy may reflect mechanisms of resilience to hypoxic-ischemic brain injury.


Assuntos
Lesões Encefálicas , Parada Cardíaca , Adulto , Humanos , Coma/complicações , Estudos Retrospectivos , Neurofisiologia , Parada Cardíaca/complicações , Eletroencefalografia , Lesões Encefálicas/complicações
6.
Sci Rep ; 13(1): 10693, 2023 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-37394559

RESUMO

Here, we investigate radiomics-based characterization of tumor vascular and microenvironmental properties in an orthotopic rat brain tumor model measured using dynamic-contrast-enhanced (DCE) MRI. Thirty-two immune compromised-RNU rats implanted with human U-251N cancer cells were imaged using DCE-MRI (7Tesla, Dual-Gradient-Echo). The aim was to perform pharmacokinetic analysis using a nested model (NM) selection technique to classify brain regions according to vasculature properties considered as the source of truth. A two-dimensional convolutional-based radiomics analysis was performed on the raw-DCE-MRI of the rat brains to generate dynamic radiomics maps. The raw-DCE-MRI and respective radiomics maps were used to build 28 unsupervised Kohonen self-organizing-maps (K-SOMs). A Silhouette-Coefficient (SC), k-fold Nested-Cross-Validation (k-fold-NCV), and feature engineering analyses were performed on the K-SOMs' feature spaces to quantify the distinction power of radiomics features compared to raw-DCE-MRI for classification of different Nested Models. Results showed that eight radiomics features outperformed respective raw-DCE-MRI in prediction of the three nested models. The average percent difference in SCs between radiomics features and raw-DCE-MRI was: 29.875% ± 12.922%, p < 0.001. This work establishes an important first step toward spatiotemporal characterization of brain regions using radiomics signatures, which is fundamental toward staging of tumors and evaluation of tumor response to different treatments.


Assuntos
Neoplasias Encefálicas , Meios de Contraste , Humanos , Ratos , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Algoritmos , Imageamento por Ressonância Magnética/métodos
7.
Sci Rep ; 13(1): 9672, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316579

RESUMO

We introduce and validate four adaptive models (AMs) to perform a physiologically based Nested-Model-Selection (NMS) estimation of such microvascular parameters as forward volumetric transfer constant, Ktrans, plasma volume fraction, vp, and extravascular, extracellular space, ve, directly from Dynamic Contrast-Enhanced (DCE) MRI raw information without the need for an Arterial-Input Function (AIF). In sixty-six immune-compromised-RNU rats implanted with human U-251 cancer cells, DCE-MRI studies estimated pharmacokinetic (PK) parameters using a group-averaged radiological AIF and an extended Patlak-based NMS paradigm. One-hundred-ninety features extracted from raw DCE-MRI information were used to construct and validate (nested-cross-validation, NCV) four AMs for estimation of model-based regions and their three PK parameters. An NMS-based a priori knowledge was used to fine-tune the AMs to improve their performance. Compared to the conventional analysis, AMs produced stable maps of vascular parameters and nested-model regions less impacted by AIF-dispersion. The performance (Correlation coefficient and Adjusted R-squared for NCV test cohorts) of the AMs were: 0.914/0.834, 0.825/0.720, 0.938/0.880, and 0.890/0.792 for predictions of nested model regions, vp, Ktrans, and ve, respectively. This study demonstrates an application of AMs that quickens and improves DCE-MRI based quantification of microvasculature properties of tumors and normal tissues relative to conventional approaches.


Assuntos
Artérias , Imageamento por Ressonância Magnética , Humanos , Animais , Ratos , Microvasos/diagnóstico por imagem , Algoritmos , Espaço Extracelular
8.
AMIA Jt Summits Transl Sci Proc ; 2023: 118-127, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37350898

RESUMO

Imaging examination selection and protocoling are vital parts of the radiology workflow, ensuring that the most suitable exam is done for the clinical question while minimizing the patient's radiation exposure. In this study, we aimed to develop an automated model for the revision of radiology examination requests using natural language processing techniques to improve the efficiency of pre-imaging radiology workflow. We extracted Musculoskeletal (MSK) magnetic resonance imaging (MRI) exam order from the radiology information system at Henry Ford Hospital in Detroit, Michigan. The pretrained transformer, "DistilBERT" was adjusted to create a vector representation of the free text within the orders while maintaining the meaning of the words. Then, a logistic regression-based classifier was trained to identify orders that required additional review. The model achieved 83% accuracy and had an area under the curve of 0.87.

9.
PLoS One ; 17(7): e0269752, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35877608

RESUMO

We study the relationships between the real-time psychophysiological activity of professional traders, their financial transactions, and market fluctuations. We collected multiple physiological signals such as heart rate, blood volume pulse, and electrodermal activity of 55 traders at a leading global financial institution during their normal working hours over a five-day period. Using their physiological measurements, we implemented a novel metric of trader's "psychophysiological activation" to capture affect such as excitement, stress and irritation. We find statistically significant relations between traders' psychophysiological activation levels and such as their financial transactions, market fluctuations, the type of financial products they traded, and their trading experience. We conducted post-measurement interviews with traders who participated in this study to obtain additional insights in the key factors driving their psychophysiological activation during financial risk processing. Our work illustrates that psychophysiological activation plays a prominent role in financial risk processing for professional traders.


Assuntos
Comércio , Psicofisiologia , Frequência Cardíaca
10.
J Neural Eng ; 19(3)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35576911

RESUMO

Objective.Brain injury is the leading cause of long-term disability worldwide, often resulting in impaired hand function. Brain-machine interfaces (BMIs) offer a potential way to improve hand function. BMIs often target replacing lost function, but may also be employed in neurorehabilitation (nrBMI) by facilitating neural plasticity and functional recovery. Here, we report a novel nrBMI capable of acquiring high-γ(70-115 Hz) information through a unique post-traumatic brain injury (TBI) hemicraniectomy window model, and delivering sensory feedback that is synchronized with, and proportional to, intended grasp force.Approach. We developed the nrBMI to use electroencephalogram recorded over a hemicraniectomy (hEEG) in individuals with TBI. The nrBMI empowered users to exert continuous, proportional control of applied force, and provided continuous force feedback. We report the results of an initial testing group of three human participants with TBI, along with a control group of three skull- and motor-intact volunteers.Main results. All participants controlled the nrBMI successfully, with high initial success rates (2 of 6 participants) or performance that improved over time (4 of 6 participants). We observed high-γmodulation with force intent in hEEG but not skull-intact EEG. Most significantly, we found that high-γcontrol significantly improved the timing synchronization between neural modulation onset and nrBMI output/haptic feedback (compared to low-frequency nrBMI control).Significance. These proof-of-concept results show that high-γnrBMIs can be used by individuals with impaired ability to control force (without immediately resorting to invasive signals like electrocorticography). Of note, the nrBMI includes a parameter to change the fraction of control shared between decoded intent and volitional force, to adjust for recovery progress. The improved synchrony between neural modulations and force control for high-γsignals is potentially important for maximizing the ability of nrBMIs to induce plasticity in neural circuits. Inducing plasticity is critical to functional recovery after brain injury.


Assuntos
Lesões Encefálicas , Interfaces Cérebro-Computador , Reabilitação Neurológica , Eletroencefalografia/métodos , Retroalimentação , Humanos , Reabilitação Neurológica/métodos
11.
J Neurol Phys Ther ; 46(3): 198-205, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35320135

RESUMO

BACKGROUND/PURPOSE: To determine the feasibility of training with electromyographically (EMG) controlled games to improve control of muscle activation patterns in stroke survivors. METHODS: Twenty chronic stroke survivors (>6 months) with moderate hand impairment were randomized to train either unilaterally (paretic only) or bilaterally over 9 one-hour training sessions. EMG signals from the unilateral or bilateral limbs controlled a cursor location on a computer screen for gameplay. The EMG muscle activation vector was projected onto the plane defined by the first 2 principal components of the activation workspace for the nonparetic hand. These principal components formed the x- and y-axes of the computer screen. RESULTS: The recruitment goal (n = 20) was met over 9 months, with no screen failure, no attrition, and 97.8% adherence rate. After training, both groups significantly decreased the time to move the cursor to a novel sequence of targets (P = 0.006) by reducing normalized path length of the cursor movement (P = 0.005), and improved the Wolf Motor Function Test (WMFT) quality score (P = 0.01). No significant group difference was observed. No significant change was seen in the WMFT time or Box and Block Test. DISCUSSION/CONCLUSIONS: Stroke survivors could successfully use the EMG-controlled games to train control of muscle activation patterns. While the nonparetic limb EMG was used in this study to create target EMG patterns, the system supports various means for creating target patterns per user desires. Future studies will employ training with the EMG-controlled games in conjunction with functional task practice for a longer intervention duration to improve overall hand function.Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A379).


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Mãos , Humanos , Músculo Esquelético , Projetos Piloto , Acidente Vascular Cerebral/terapia
12.
IEEE Trans Biomed Eng ; 69(5): 1813-1825, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34962860

RESUMO

OBJECTIVE: Most cardiac arrest patients who are successfully resuscitated are initially comatose due to hypoxic-ischemic brain injury. Quantitative electroencephalography (EEG) provides valuable prognostic information. However, prior approaches largely rely on snapshots of the EEG, without taking advantage of temporal information. METHODS: We present a recurrent deep neural network with the goal of capturing temporal dynamics from longitudinal EEG data to predict long-term neurological outcomes. We utilized a large international dataset of continuous EEG recordings from 1,038 cardiac arrest patients from seven hospitals in Europe and the US. Poor outcome was defined as a Cerebral Performance Category (CPC) score of 3-5, and good outcome as CPC score 0-2 at 3 to 6-months after cardiac arrest. Model performance is evaluated using 5-fold cross validation. RESULTS: The proposed approach provides predictions which improve over time, beginning from an area under the receiver operating characteristic curve (AUC-ROC) of 0.78 (95% CI: 0.72-0.81) at 12 hours, and reaching 0.88 (95% CI: 0.85-0.91) by 66 h after cardiac arrest. At 66 h, (sensitivity, specificity) points of interest on the ROC curve for predicting poor outcomes were (32,99)%, (55,95)%, and (62,90)%, (99,23)%, (95,47)%, and (90,62)%; whereas for predicting good outcome, the corresponding operating points were (17,99)%, (47,95)%, (62,90)%, (99,19)%, (95,48)%, (70,90)%. Moreover, the model provides predicted probabilities that closely match the observed frequencies of good and poor outcomes (calibration error 0.04). CONCLUSIONS AND SIGNIFICANCE: These findings suggest that accounting for EEG trend information can substantially improve prediction of neurologic outcomes for patients with coma following cardiac arrest.


Assuntos
Aprendizado Profundo , Parada Cardíaca , Coma/diagnóstico , Coma/etiologia , Eletroencefalografia , Parada Cardíaca/complicações , Parada Cardíaca/diagnóstico , Humanos , Estudos Prospectivos
13.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6734-6737, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892653

RESUMO

Stroke is a leading cause of disability in the U.S. Hand impairment is a common consequence of stroke, potentially impacting all facets of life as the hands are the primary means of interacting with the world. Typically, therapy is the prescribed treatment after stroke. However, a majority of stroke survivors have limited recovery and thus chronic impairment. Assistive, rather than therapeutic, devices may help these individuals restore lost function and improve independence and engagement in society. Current assistive devices, however, typically fail to address the greatest barriers to successful use with stroke survivors. In the hand, weakness and incoordination arise from a seemingly paradoxical combination of limited voluntary activation of muscles and involuntary neuromuscular hyperexcitability. Thus, profound strength deficits can be accompanied by substantial forces opposing the intended movement. The assistive device presented in this paper can provide both sufficient flexion and extension assistance to overcome these barriers. A single actuator for each digit provides flexion or extension assistance through push-pull cables guided along the dorsal side of the hand. User intent can be decoded from Electromyographic (EMG) signals to drive the device throughout the movement. EMG control is customized to the capabilities of each user by examining the voluntary EMG workspace.


Assuntos
Exoesqueleto Energizado , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Mãos , Humanos , Sobreviventes
14.
Front Digit Health ; 3: 608893, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34713090

RESUMO

Introduction: Developing reliable medication dosing guidelines is challenging because individual dose-response relationships are mitigated by both static (e. g., demographic) and dynamic factors (e.g., kidney function). In recent years, several data-driven medication dosing models have been proposed for sedatives, but these approaches have been limited in their ability to assess interindividual differences and compute individualized doses. Objective: The primary objective of this study is to develop an individualized framework for sedative-hypnotics dosing. Method: Using publicly available data (1,757 patients) from the MIMIC IV intensive care unit database, we developed a sedation management agent using deep reinforcement learning. More specifically, we modeled the sedative dosing problem as a Markov Decision Process and developed an RL agent based on a deep deterministic policy gradient approach with a prioritized experience replay buffer to find the optimal policy. We assessed our method's ability to jointly learn an optimal personalized policy for propofol and fentanyl, which are among commonly prescribed sedative-hypnotics for intensive care unit sedation. We compared our model's medication performance against the recorded behavior of clinicians on unseen data. Results: Experimental results demonstrate that our proposed model would assist clinicians in making the right decision based on patients' evolving clinical phenotype. The RL agent was 8% better at managing sedation and 26% better at managing mean arterial compared to the clinicians' policy; a two-sample t-test validated that these performance improvements were statistically significant (p < 0.05). Conclusion: The results validate that our model had better performance in maintaining control variables within their target range, thereby jointly maintaining patients' health conditions and managing their sedation.

15.
Resuscitation ; 169: 86-94, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34699925

RESUMO

OBJECTIVE: Electroencephalography (EEG) is an important tool for neurological outcome prediction after cardiac arrest. However, the complexity of continuous EEG data limits timely and accurate interpretation by clinicians. We develop a deep neural network (DNN) model to leverage complex EEG trends for early and accurate assessment of cardiac arrest coma recovery likelihood. METHODS: We developed a multiscale DNN combining convolutional neural networks (CNN) and recurrent neural networks (long short-term memory [LSTM]) using EEG and demographic information (age, gender, shockable rhythm) from a multicenter cohort of 1,038 cardiac arrest patients. The CNN learns EEG feature representations while the multiscale LSTM captures short-term and long-term EEG dynamics on multiple time scales. Poor outcome is defined as a Cerebral Performance Category (CPC) score of 3-5 and good outcome as CPC score 1-2 at 3-6 months after cardiac arrest. Performance is evaluated using area under the receiver operating characteristic curve (AUC) and calibration error. RESULTS: Model performance increased with EEG duration, with AUC increasing from 0.83 (95% Confidence Interval [CI] 0.79-0.87 at 12h to 0.91 (95%CI 0.88-0.93) at 66h. Sensitivity of good and poor outcome prediction was 77% and 75% at a specificity of 90%, respectively. Sensitivity of poor outcome was 50% at a specificity of 99%. Predicted probability was well matched to the observation frequency of poor outcomes, with a calibration error of 0.11 [0.09-0.14]. CONCLUSIONS: These results demonstrate that incorporating EEG evolution over time improves the accuracy of neurologic outcome prediction for patients with coma after cardiac arrest.


Assuntos
Coma , Parada Cardíaca , Coma/diagnóstico , Coma/etiologia , Eletroencefalografia , Parada Cardíaca/complicações , Parada Cardíaca/terapia , Humanos , Redes Neurais de Computação , Prognóstico , Estudos Prospectivos
16.
Crit Care Med ; 49(1): e91-e97, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33156121

RESUMO

OBJECTIVES: Sepsis is a life-threatening response to infection that causes tissue damage, organ failure, and death. Effective early prediction of sepsis would improve patients' diagnosis and reduce the cost associated with late-stage sepsis infection by applying appropriate early intervention. However, effective early prediction is challenging because sepsis biomarkers are neither obvious nor definitive, and sepsis datasets are heavily imbalanced against positive diagnosis of sepsis while containing significant missing values. Early prediction of sepsis in ICUs using clinical data is the objective of the PhysioNet/Computing in Cardiology Challenge 2019. DESIGN: In this article, we proposed a machine learning algorithm to aid in the early detection of sepsis. SETTING: We applied linear interpolation and implemented a sample weighted AdaBoost model to predict sepsis 6 hours before clinical diagnosis. PATIENTS: Medical data contains more than 40,000 patients gathered from three geographically distinct U.S. hospital systems that consisted of a combination of hourly vital sign, lab values, and static patient descriptions. INTERVENTIONS: The challenge metric, however, did not directly reward models for their generalizability across institutions. MEASUREMENTS AND MAIN RESULTS: The article is evaluated using a new metric called Utility Score that is defined as Official scoring criteria. Our approach was among the top 10% of entries to the Challenge on a hidden test set. CONCLUSIONS: Herein, we demonstrate that our proposed approach was the most effective of the Challenge entrants when such generalizability is explicitly accounted for in model evaluation.


Assuntos
Sepse/diagnóstico , Algoritmos , Biomarcadores , Diagnóstico Precoce , Feminino , Humanos , Unidades de Terapia Intensiva , Aprendizado de Máquina , Masculino , Sepse/patologia , Sinais Vitais
17.
J Lasers Med Sci ; 11(3): 255-261, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32802284

RESUMO

Introduction: The axillary hair removal laser is one of the most often used procedures to treat unwanted hairs in that region. Employing this technology can be helpful in decreasing the bromhidrosis. Methods: In the present research, a clinical trial study over the effect of the hair removal laser on normal microbial flora at the axillary region is presented. The intervention group consisted of 30 women referred to the dermatologic clinic for the purpose of removing axillary hair by the alexandrite 755 nm laser and the control group consisted of 30 women referred to the same clinic for any other reasons. Both groups were evaluated for the type of bacterial strains on the first visit and after three and six months. Results: The results showed that the sense of sweat smell improved by about 63% after the last laser session. The frequency of all bacterial strains decreased in the intervention group except Staphylococcus epidermidis which was significant. In the control group, there was no significant decrement in any bacterial strains and even the prevalence of more strains including Staphylococcus aureus and S. epidermidis increased. Counting the mean bacterial colon showed a slight decrement of the bacterial count following the laser. Conclusion: The use of laser radiation, even with the aim of hair removal, can alter the microbial flora, and it can be accompanied by the improvement of the smell of sweat. The effect of the laser on different bacterial strains is quite different, which can depend on the amount of energy, the wavelength, the characteristics of the area under the laser, and also the structural properties of the membrane of the microorganism itself.

18.
Neurology ; 95(5): e563-e575, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32661097

RESUMO

OBJECTIVE: To determine cost-effectiveness parameters for EEG monitoring in cardiac arrest prognostication. METHODS: We conducted a cost-effectiveness analysis to estimate the cost per quality-adjusted life-year (QALY) gained by adding continuous EEG monitoring to standard cardiac arrest prognostication using the American Academy of Neurology Practice Parameter (AANPP) decision algorithm: neurologic examination, somatosensory evoked potentials, and neuron-specific enolase. We explored lifetime cost-effectiveness in a closed system that incorporates revenue back into the medical system (return) from payers who survive a cardiac arrest with good outcome and contribute to the health system during the remaining years of life. Good outcome was defined as a Cerebral Performance Category (CPC) score of 1-2 and poor outcome as CPC of 3-5. RESULTS: An improvement in specificity for poor outcome prediction of 4.2% would be sufficient to make continuous EEG monitoring cost-effective (baseline AANPP specificity = 83.9%). In sensitivity analysis, the effect of increased sensitivity on the cost-effectiveness of EEG depends on the utility (u) assigned to a poor outcome. For patients who regard surviving with a poor outcome (CPC 3-4) worse than death (u = -0.34), an increased sensitivity for poor outcome prediction of 13.8% would make AANPP + EEG monitoring cost-effective (baseline AANPP sensitivity = 76.3%). In the closed system, an improvement in sensitivity of 1.8% together with an improvement in specificity of 3% was sufficient to make AANPP + EEG monitoring cost-effective, assuming lifetime return of 50% (USD $70,687). CONCLUSION: Incorporating continuous EEG monitoring into cardiac arrest prognostication is cost-effective if relatively small improvements in sensitivity and specificity are achieved.


Assuntos
Análise Custo-Benefício , Eletroencefalografia/economia , Parada Cardíaca/complicações , Monitorização Neurofisiológica/economia , Monitorização Neurofisiológica/métodos , Algoritmos , Árvores de Decisões , Humanos , Prognóstico , Convulsões/diagnóstico , Convulsões/etiologia , Sensibilidade e Especificidade
19.
J Hand Ther ; 33(2): 246-253, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32349885

RESUMO

INTRODUCTION: Lifespans after the occurrence of a stroke have been lengthening, but most stroke survivors will experience chronic impairment. Directed, repetitive practice may reduce deficits, but clinical access is often limited by a variety of factors, such as transportation. PURPOSE OF THE STUDY: To introduce a multiuser virtual reality platform that can be used to promote therapist-client interactions when the client is at home. METHODS: The Virtual Environment for Rehabilitative Gaming Exercises encourages exploration of the hand workspace by enabling multiple participants, located remotely and colocated virtually, to interact with the same virtual objects in the shared virtual space. Each user controls an avatar by corresponding movement of his or her own body segments. System performance with stroke survivors was evaluated during longitudinal studies in a laboratory environment and in participants' homes. Active arm movement was tracked throughout therapy sessions for both studies. RESULTS: Stroke survivors achieved considerable arm movement while using the system. Mean voluntary hand displacement, after accounting for trunk displacement, was greater than 350 m per therapy session for the Virtual Environment for Rehabilitative Gaming Exercises system. Compliance for home-based therapy was quite high, with 94% of all scheduled sessions completed. Having multiple players led to longer sessions and more arm movement than when the stroke survivors were trained alone. CONCLUSIONS: Multiuser virtual reality offers a relatively inexpensive means of extending clinical therapy into home and enabling family and friends to support rehabilitation efforts, even when physically remote from each other.


Assuntos
Terapia por Exercício , Mãos , Reabilitação do Acidente Vascular Cerebral , Jogos de Vídeo , Realidade Virtual , Humanos
20.
Front Digit Health ; 2: 608920, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34713069

RESUMO

Electroencephalography (EEG) is used in the diagnosis, monitoring, and prognostication of many neurological ailments including seizure, coma, sleep disorders, brain injury, and behavioral abnormalities. One of the primary challenges of EEG data is its sensitivity to a breadth of non-stationary noises caused by physiological-, movement-, and equipment-related artifacts. Existing solutions to artifact detection are deficient because they require experts to manually explore and annotate data for artifact segments. Existing solutions to artifact correction or removal are deficient because they assume that the incidence and specific characteristics of artifacts are similar across both subjects and tasks (i.e., "one-size-fits-all"). In this paper, we describe a novel EEG noise-reduction method that uses representation learning to perform patient- and task-specific artifact detection and correction. More specifically, our method extracts 58 clinically relevant features and applies an ensemble of unsupervised outlier detection algorithms to identify EEG artifacts that are unique to a given task and subject. The artifact segments are then passed to a deep encoder-decoder network for unsupervised artifact correction. We compared the performance of classification models trained with and without our method and observed a 10% relative improvement in performance when using our approach. Our method provides a flexible end-to-end unsupervised framework that can be applied to novel EEG data without the need for expert supervision and can be used for a variety of clinical decision tasks, including coma prognostication and degenerative illness detection. By making our method, code, and data publicly available, our work provides a tool that is of both immediate practical utility and may also serve as an important foundation for future efforts in this domain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...