Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain ; 146(5): 1844-1858, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36314052

RESUMO

Charcot-Marie-Tooth (CMT) disease is one of the most common inherited neurological disorders, affecting either axons from the motor and/or sensory neurons or Schwann cells of the peripheral nervous system (PNS) and caused by more than 100 genes. We previously identified mutations in FGD4 as responsible for CMT4H, an autosomal recessive demyelinating form of CMT disease. FGD4 encodes FRABIN, a GDP/GTP nucleotide exchange factor, particularly for the small GTPase Cdc42. Remarkably, nerves from patients with CMT4H display excessive redundant myelin figures called outfoldings that arise from focal hypermyelination, suggesting that FRABIN could play a role in the control of PNS myelination. To gain insights into the role of FGD4/FRABIN in Schwann cell myelination, we generated a knockout mouse model (Fgd4SC-/-), with conditional ablation of Fgd4 in Schwann cells. We show that the specific deletion of FRABIN in Schwann cells leads to aberrant myelination in vitro, in dorsal root ganglia neuron/Schwann cell co-cultures, as well as in vivo, in distal sciatic nerves from Fgd4SC-/- mice. We observed that those myelination defects are related to an upregulation of some interactors of the NRG1 type III/ERBB2/3 signalling pathway, which is known to ensure a proper level of myelination in the PNS. Based on a yeast two-hybrid screen, we identified SNX3 as a new partner of FRABIN, which is involved in the regulation of endocytic trafficking. Interestingly, we showed that the loss of FRABIN impairs endocytic trafficking, which may contribute to the defective NRG1 type III/ERBB2/3 signalling and myelination. Using RNA-Seq, in vitro, we identified new potential effectors of the deregulated pathways, such as ERBIN, RAB11FIP2 and MAF, thereby providing cues to understand how FRABIN contributes to proper ERBB2 trafficking or even myelin membrane addition through cholesterol synthesis. Finally, we showed that the re-establishment of proper levels of the NRG1 type III/ERBB2/3 pathway using niacin treatment reduces myelin outfoldings in nerves of CMT4H mice. Overall, our work reveals a new role of FRABIN in the regulation of NRG1 type III/ERBB2/3 NRG1signalling and myelination and opens future therapeutic strategies based on the modulation of the NRG1 type III/ERBB2/3 pathway to reduce CMT4H pathology and more generally other demyelinating types of CMT disease.


Assuntos
Doença de Charcot-Marie-Tooth , Animais , Camundongos , Doença de Charcot-Marie-Tooth/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Camundongos Knockout , Mutação , Neuregulina-1/metabolismo , Células de Schwann , Nervo Isquiático/patologia , Nexinas de Classificação/genética , Nexinas de Classificação/metabolismo
2.
Epilepsia ; 61(5): 868-878, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32239694

RESUMO

OBJECTIVE: Early onset epileptic encephalopathy with suppression-burst is one of the most severe epilepsy phenotypes in human patients. A significant proportion of cases have a genetic origin, and the most frequently mutated gene is KCNQ2, encoding Kv7.2, a voltage-dependent potassium channel subunit, leading to so-called KCNQ2-related epileptic encephalopathy (KCNQ2-REE). To study the pathophysiology of KCNQ2-REE in detail and to provide a relevant preclinical model, we generated and described a knock-in mouse model carrying the recurrent p.(Thr274Met) variant. METHODS: We introduced the p.(Thr274Met) variant by homologous recombination in embryonic stem cells, injected into C57Bl/6N blastocysts and implanted in pseudopregnant mice. Mice were then bred with 129Sv Cre-deleter to generate heterozygous mice carrying the p.(Thr274Met), and animals were maintained on the 129Sv genetic background. We studied the development of this new model and performed in vivo electroencephalographic (EEG) recordings, neuroanatomical studies at different time points, and multiple behavioral tests. RESULTS: The Kcnq2Thr274Met/+ mice are viable and display generalized spontaneous seizures first observed between postnatal day 20 (P20) and P30. In vivo EEG recordings show that the paroxysmal events observed macroscopically are epileptic seizures. The brain of the Kcnq2Thr274Met/+ animals does not display major structural defects, similar to humans, and their body weight is normal. Kcnq2Thr274Met/+ mice have a reduced life span, with a peak of unexpected death occurring for 25% of the animals by 3 months of age. Epileptic seizures were generally not observed when animals grew older. Behavioral characterization reveals important deficits in spatial learning and memory in adults but no gross abnormality during early neurosensory development. SIGNIFICANCE: Taken together, our results indicate that we have generated a relevant model to study the pathophysiology of KCNQ2-related epileptic encephalopathy and perform preclinical research for that devastating and currently intractable disease.


Assuntos
Disfunção Cognitiva/etiologia , Epilepsia Generalizada/etiologia , Canal de Potássio KCNQ2/metabolismo , Convulsões/etiologia , Animais , Encéfalo/patologia , Disfunção Cognitiva/genética , Modelos Animais de Doenças , Eletroencefalografia , Epilepsia Generalizada/genética , Feminino , Técnicas de Introdução de Genes , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/fisiologia , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Convulsões/genética
3.
Behav Genet ; 50(1): 26-40, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31542842

RESUMO

Modeling in other organism species is one of the crucial stages in ascertaining the association between gene and psychiatric disorder. Testing Autism Spectrum Disorder (ASD) in mice is very popular but construct validity of the batteries is not available. We presented here the first factor analysis of a behavioral model of ASD-like in mice coupled with empirical validation. We defined fourteen measures aligning mouse-behavior measures with the criteria defined by DSM-5 for the diagnostic of ASD. Sixty-five mice belonging to a heterogeneous pool of genotypes were tested. Reliability coefficients vary from .68 to .81. The factor analysis resulted in a three- factor solution in line with DSM criteria: social behavior, stereotypy and narrowness of the field of interest. The empirical validation with mice sharing a haplo-insufficiency of the zinc-finger transcription factor TSHZ3/Tshz3 associated with ASD shows the discriminant power of the highly loaded items.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Modelos Animais de Doenças , Reprodutibilidade dos Testes , Animais , Atenção/fisiologia , Transtorno do Espectro Autista/metabolismo , Transtorno Autístico/metabolismo , Transtorno Autístico/fisiopatologia , Análise Fatorial , Haploinsuficiência , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos , Comportamento Social , Comportamento Estereotipado/fisiologia , Fatores de Transcrição/metabolismo
4.
Curr Protoc Mouse Biol ; 8(1): 54-78, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30040243

RESUMO

The immaturity at birth and the slowness of ontogenic processes in mice provide the opportunity to measure rates of development. We describe here 18 measures covering the sensorial and motor onset from birth to weaning. The measures are non-invasive, making a follow-up strategy possible. The first basic protocol indicates how to produce mice with known conceptional or chronological age, as the control of the age is a prerequisite to compare rates of development in groups of mice. The second basic protocol describes a set of methods for identifying the pups during a follow-up study. A third basic protocol describes testing newborn mice for the appearance of sensorial and motor abilities in a follow-up design. Taken together, the three protocols make possible the validation of potential murine models of interest for understanding human developmental disorders. © 2018 by John Wiley & Sons, Inc.


Assuntos
Atividade Motora/fisiologia , Desmame , Animais , Feminino , Masculino , Camundongos
6.
Behav Genet ; 47(3): 305-322, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28204906

RESUMO

We hypothesize that the trisomy 21 (Down syndrome) is the additive and interactive outcome of the triple copy of different regions of HSA21. Because of the small number of patients with partial trisomy 21, we addressed the question in the Mouse in which three chromosomal regions located on MMU10, MMU17 and MMU16 carries almost all the HSA21 homologs. Male mice from four segmental trisomic strains covering the D21S17-ETS2 (syntenic to MMU16) were examined with an exhaustive battery of cognitive tests, motor tasks and MRI and compared with TS65Dn that encompasses D21S17-ETS2. None of the four strains gather all the impairments (measured by the effect size) of TS65Dn strain. The 152F7 strain was close to TS65Dn for motor behavior and reference memory and the three other strains 230E8, 141G6 and 285E6 for working memory. Episodic memory was impaired only in strain 285E6. The hippocampus and cerebellum reduced sizes that were seen in all the strains indicate that trisomy 21 is not only a hippocampus syndrome but that it results from abnormal interactions between the two structures.


Assuntos
Cerebelo/patologia , Síndrome de Down/genética , Hipocampo/patologia , Animais , Cognição , Síndrome de Down/complicações , Síndrome de Down/patologia , Humanos , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Atividade Motora/genética
7.
PLoS One ; 9(3): e92169, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24667344

RESUMO

Proper brain functioning requires a fine-tuning between excitatory and inhibitory neurotransmission, a balance maintained through the regulation and release of glutamate and GABA. Rett syndrome (RTT) is a rare genetic disorder caused by mutations in the methyl-CpG binding protein 2 (MECP2) gene affecting the postnatal brain development. Dysfunctions in the GABAergic and glutamatergic systems have been implicated in the neuropathology of RTT and a disruption of the balance between excitation and inhibition, together with a perturbation of the electrophysiological properties of GABA and glutamate neurons, were reported in the brain of the Mecp2-deficient mouse. However, to date, the extent and the nature of the GABA/glutamate deficit affecting the Mecp2-deficient mouse brain are unclear. In order to better characterize these deficits, we simultaneously analyzed the GABA and glutamate levels in Mecp2-deficient mice at 2 different ages (P35 and P55) and in several brain areas. We used a multilevel approach including the quantification of GABA and glutamate levels, as well as the quantification of the mRNA and protein expression levels of key genes involved in the GABAergic and glutamatergic pathways. Our results show that Mecp2-deficient mice displayed regional- and age-dependent variations in the GABA pathway and, to a lesser extent, in the glutamate pathway. The implication of the GABA pathway in the RTT neuropathology was further confirmed using an in vivo treatment with a GABA reuptake inhibitor that significantly improved the lifespan of Mecp2-deficient mice. Our results confirm that RTT mouse present a deficit in the GABAergic pathway and suggest that GABAergic modulators could be interesting therapeutic agents for this severe neurological disorder.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Ácido Glutâmico/metabolismo , Proteína 2 de Ligação a Metil-CpG/fisiologia , Síndrome de Rett/metabolismo , Transdução de Sinais , Ácido gama-Aminobutírico/metabolismo , Animais , Western Blotting , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Células Cultivadas , Agonistas GABAérgicos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ácidos Nipecóticos/farmacologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Síndrome de Rett/etiologia , Síndrome de Rett/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transmissão Sináptica , Tiagabina , Ácido gama-Aminobutírico/química , Ácido gama-Aminobutírico/genética
8.
BMC Neurosci ; 12: 47, 2011 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-21609470

RESUMO

BACKGROUND: Rett syndrome (RTT, MIM #312750) is a severe neurological disorder caused by mutations in the X-linked methyl-CpG binding protein 2 (MECP2) gene. Female patients are affected with an incidence of 1/15000 live births and develop normally from birth to 6-18 months of age before the onset of deficits in autonomic, cognitive, motor functions (stereotypic hand movements, impaired locomotion) and autistic features. Studies on Mecp2 mouse models, and specifically null mice, revealed morphological and functional alterations of neurons. Several functions that are regulated by bioaminergic nuclei or peripheral ganglia are impaired in the absence of Mecp2. RESULTS: Using high performance liquid chromatography, combined with electrochemical detection (HPLC/EC) we found that Mecp2(-/y) mice exhibit an alteration of DA metabolism in the ponto-bulbar region at 5 weeks followed by a more global alteration of monoamines when the disease progresses (8 weeks). Hypothalamic measurements suggest biphasic disturbances of norepinephrine and serotonin at pathology onset (5 weeks) that were found stabilized later on (8 weeks). Interestingly, the postnatal nigrostriatal dopaminergic deficit identified previously does not parallel the reduction of the other neurotransmitters investigated. Finally, dosage in cortical samples do not suggest modification in the monoaminergic content respectively at 5 and 8 weeks of age. CONCLUSIONS: We have identified that the level of catecholamines and serotonin is differentially affected in Mecp2(-/y) brain areas in a time-dependent fashion.


Assuntos
Encéfalo/metabolismo , Dopamina/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Norepinefrina/metabolismo , Serotonina/metabolismo , Fatores Etários , Animais , Cromatografia Líquida de Alta Pressão , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Knockout
9.
Neurobiol Dis ; 41(2): 385-97, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20951208

RESUMO

Rett syndrome (RTT) is a severe neurological disorder caused by mutations in the MECP2 gene, in which older patients often develop parkinsonian features. Although Mecp2 has been shown to modulate the catecholaminergic metabolism of the RTT mouse model, little is known about the central dopaminergic neurons. Here we found that the progression of the motor dysfunction in the Mecp2-deficient mouse becomes more severe between 4 and 9 weeks of age. We then studied the phenotype of the dopaminergic neurons of the substantia nigra pars compacta (SNpc). We found a major reduction in the number of tyrosine hydroxylase (Th)-expressing neurons, as well as a reduction in their soma size, by 5 weeks of age. We showed that this deficit is not due to apoptosis and that the remaining neurons express a mature dopaminergic phenotype. A reduction in the Th-staining intensity was also found in the caudate-putamen (CPu), the main dopaminergic target for SNpc. We found that the amount of activated-Th (pSer40-Th) is slightly reduced at 5 weeks of age in the Mecp2-deficient mouse, but that this amount is affected more importantly by 9 weeks of age. Neurochemical measurements revealed a significant reduction of dopamine content at 5 and 9 weeks of age in the CPu whereas SNpc contents were preserved. Finally, we found that chronic L-Dopa treatment improved the motor deficits previously identified. Altogether, our findings demonstrate that Mecp2-deficiency induces nigrostriatal deficits, and they offer a new perspective to better understand the origin of motor dysfunction in RTT.


Assuntos
Proteína 2 de Ligação a Metil-CpG/deficiência , Proteína 2 de Ligação a Metil-CpG/genética , Síndrome de Rett/patologia , Síndrome de Rett/fisiopatologia , Substância Negra/patologia , Substância Negra/fisiopatologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Dopamina/deficiência , Masculino , Proteína 2 de Ligação a Metil-CpG/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neurônios Motores/patologia , Neurônios Motores/fisiologia , Fenótipo , Síndrome de Rett/genética , Substância Negra/metabolismo
10.
Behav Brain Res ; 216(1): 313-20, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20713094

RESUMO

The methyl-CpG binding protein 2 (Mecp2) gene encodes a nuclear transcriptional modulator highly expressed in post-mitotic neurons. Mutations of this gene cause a large spectrum of neurological disorders in humans. Several lines of mice harboring a constitutional deletion of Mecp2 are available. The use of these models is crucial to understand the basis of Mecp2-related pathologies. However, most of the studies performed using these lines focused on different postnatal time points. The aim of the present study was to provide a more complete description of the behavioral phenotype of the Mecp2(tm1.1Bird) mice. To this aim, we used a modified version of the SHIRPA protocol and a set of sensorimotor tests and respiratory metabolism measurements, in a longitudinal study of the Mecp2-null male mice (Mecp2(-/y)) from three weeks (weaning) to eight weeks of age. Our data document, for the first time, the sequential appearance of the in vivo deficits in this mouse line. The observed deficits initially concern major parameters (such as body weight), and are followed by involuntary and sensitive defects (reflexes). Subsequently, motor functions and respiratory metabolism are severally impaired. A detailed description of these gradual defects may help to identify their neuronal origin and to elaborate novel therapeutic strategies.


Assuntos
Proteína 2 de Ligação a Metil-CpG/genética , Atividade Motora/genética , Fadiga Muscular/genética , Consumo de Oxigênio/genética , Respiração/genética , Análise de Variância , Animais , Força da Mão/fisiologia , Masculino , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Fenótipo , Teste de Desempenho do Rota-Rod , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...