Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 86: 308-21, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26026699

RESUMO

Because of the increased insight into the biological role of hydrogen peroxide (H2O2) under physiological and pathological conditions and the role it presumably plays in the action of natural and synthetic redox-active drugs, there is a need to accurately define the type and magnitude of reactions that may occur with this intriguing and key species of redoxome. Historically, and frequently incorrectly, the impact of catalase-like activity has been assigned to play a major role in the action of many redox-active drugs, mostly SOD mimics and peroxynitrite scavengers, and in particular MnTBAP(3-) and Mn salen derivatives. The advantage of one redox-active compound over another has often been assigned to the differences in catalase-like activity. Our studies provide substantial evidence that Mn(III) N-alkylpyridylporphyrins couple with H2O2 in actions other than catalase-related. Herein we have assessed the catalase-like activities of different classes of compounds: Mn porphyrins (MnPs), Fe porphyrins (FePs), Mn(III) salen (EUK-8), and Mn(II) cyclic polyamines (SOD-active M40403 and SOD-inactive M40404). Nitroxide (tempol), nitrone (NXY-059), ebselen, and MnCl2, which have not been reported as catalase mimics, were used as negative controls, while catalase enzyme was a positive control. The dismutation of H2O2 to O2 and H2O was followed via measuring oxygen evolved with a Clark oxygen electrode at 25°C. The catalase enzyme was found to have kcat(H2O2)=1.5×10(6)M(-1) s(-1). The yield of dismutation, i.e., the maximal amount of O2 evolved, was assessed also. The magnitude of the yield reflects an interplay between the kcat(H2O2) and the stability of compounds toward H2O2-driven oxidative degradation, and is thus an accurate measure of the efficacy of a catalyst. The kcat(H2O2) values for 12 cationic Mn(III) N-substituted (alkyl and alkoxyalkyl) pyridylporphyrin-based SOD mimics and Mn(III) N,N'-dialkylimidazolium porphyrin, MnTDE-2-ImP(5+), ranged from 23 to 88M(-1) s(-1). The analogous Fe(III) N-alkylpyridylporphyrins showed ~10-fold higher activity than the corresponding MnPs, but the values of kcat(H2O2) are still ~4 orders of magnitude lower than that of the enzyme. While the kcat(H2O2) values for Fe ethyl and n-octyl analogs were 803.5 and 368.4M(-1) s(-1), respectively, the FePs are more prone to H2O2-driven oxidative degradation, therefore allowing for similar yields in H2O2 dismutation as analogous MnPs. The kcat(H2O2) values are dependent on the electron deficiency of the metal site as it controls the peroxide binding in the first step of the dismutation process. SOD-like activities depend on electron deficiency of the metal site also, as it controls the first step of O2(●-) dismutation. In turn, the kcat(O2(●-)) parallels the kcat(H2O2). Therefore, the electron-rich anionic non-SOD mimic MnTBAP(3-) has essentially very low catalase-like activity, kcat(H2O2)=5.8M(-1) s(-1). The catalase-like activities of Mn(III) and Fe(III) porphyrins are at most, 0.0004 and 0.05% of the enzyme activity, respectively. The kcat(H2O2) values of 8.2 and 6.5M(-1) s(-1) were determined for electron-rich Mn(II) cyclic polyamine-based compounds, M40403 and M40404, respectively. The EUK-8, with modest SOD-like activity, has only slightly higher kcat(H2O2)=13.5M(-1) s(-1). The biological relevance of kcat(H2O2) of MnTE-2-PyP(5+), MnTDE-2-ImP(5+), MnTBAP(3-), FeTE-2-PyP(5+), M40403, M40404, and Mn salen was evaluated in wild-type and peroxidase/catalase-deficient E. coli.


Assuntos
Antioxidantes/química , Catalase/química , Antioxidantes/farmacologia , Catálise , Complexos de Coordenação/química , Avaliação Pré-Clínica de Medicamentos , Escherichia coli/efeitos dos fármacos , Peróxido de Hidrogênio/química , Cinética , Viabilidade Microbiana/efeitos dos fármacos , Mimetismo Molecular , Oxirredução , Porfirinas/química , Porfirinas/farmacologia
2.
Inorg Chem ; 53(21): 11467-83, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25333724

RESUMO

Our goal herein has been to gain further insight into the parameters which control porphyrin therapeutic potential. Mn porphyrins (MnTnOct-2-PyP(5+), MnTnHexOE-2-PyP(5+), MnTE-2-PyPhP(5+), and MnTPhE-2-PyP(5+)) that bear the same positive charge and same number of carbon atoms at meso positions of porphyrin core were explored. The carbon atoms of their meso substituents are organized to form either linear or cyclic structures of vastly different redox properties, bulkiness, and lipophilicities. These Mn porphyrins were compared to frequently studied compounds, MnTE-2-PyP(5+), MnTE-3-PyP(5+), and MnTBAP(3-). All Mn(III) porphyrins (MnPs) have metal-centered reduction potential, E1/2 for Mn(III)P/Mn(II)P redox couple, ranging from -194 to +340 mV versus NHE, log kcat(O2(•-)) from 3.16 to 7.92, and log kred(ONOO(-)) from 5.02 to 7.53. The lipophilicity, expressed as partition between n-octanol and water, log POW, was in the range -1.67 to -7.67. The therapeutic potential of MnPs was assessed via: (i) in vitro ability to prevent spontaneous lipid peroxidation in rat brain homogenate as assessed by malondialdehyde levels; (ii) in vivo O2(•-) specific assay to measure the efficacy in protecting the aerobic growth of SOD-deficient Saccharomyces cerevisiae; and (iii) aqueous solution chemistry to measure the reactivity toward major in vivo endogenous antioxidant, ascorbate. Under the conditions of lipid peroxidation assay, the transport across the cellular membranes, and in turn shape and size of molecule, played no significant role. Those MnPs of E1/2 ∼ +300 mV were the most efficacious, significantly inhibiting lipid peroxidation in 0.5-10 µM range. At up to 200 µM, MnTBAP(3-) (E1/2 = -194 mV vs NHE) failed to inhibit lipid peroxidation, while MnTE-2-PyPhP(5+) with 129 mV more positive E1/2 (-65 mV vs NHE) was fully efficacious at 50 µM. The E1/2 of Mn(III)P/Mn(II)P redox couple is proportional to the log kcat(O2(•-)), i.e., the SOD-like activity of MnPs. It is further proportional to kred(ONOO(-)) and the ability of MnPs to prevent lipid peroxidation. In turn, the inhibition of lipid peroxidation by MnPs is also proportional to their SOD-like activity. In an in vivo S. cerevisiae assay, however, while E1/2 predominates, lipophilicity significantly affects the efficacy of MnPs. MnPs of similar log POW and E1/2, that have linear alkyl or alkoxyalkyl pyridyl substituents, distribute more easily within a cell and in turn provide higher protection to S. cerevisiae in comparison to MnP with bulky cyclic substituents. The bell-shape curve, with MnTE-2-PyP(5+) exhibiting the highest ability to catalyze ascorbate oxidation, has been established and discussed. Our data support the notion that the SOD-like activity of MnPs parallels their therapeutic potential, though species other than O2(•-), such as peroxynitrite, H2O2, lipid reactive species, and cellular reductants, may be involved in their mode(s) of action(s).


Assuntos
Metaloporfirinas/farmacologia , Saccharomyces cerevisiae/enzimologia , Superóxido Dismutase/antagonistas & inibidores , Cátions/química , Cátions/farmacologia , Relação Dose-Resposta a Droga , Peroxidação de Lipídeos/efeitos dos fármacos , Manganês/química , Manganês/farmacologia , Metaloporfirinas/química , Estrutura Molecular , Relação Estrutura-Atividade , Superóxido Dismutase/deficiência , Superóxido Dismutase/metabolismo
3.
J Inorg Biochem ; 140: 94-103, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25086237

RESUMO

In the present study we have synthesized a novel amphiphilic porphyrin and its Ag(II) complex through modification of water-soluble porphyrinic structure in order to increase its lipophilicity and in turn pharmacological potency. New cationic non-symmetrical meso-substituted porphyrins were characterized by UV-visible, electrospray ionization mass spectrometry (ESI-MS), (1)H NMR techniques, lipophilicity (thin-layer chromatographic retention factor, Rf), and elemental analysis. The key toxicological profile (i.e. cytotoxicity and cell line- (cancer type-) specificity; genotoxicity; cell cycle effects) of amphiphilic Ag porphyrin was studied in human normal and cancer cell lines of various tissue origins and compared with its water-soluble analog. Structural modification of the molecule from water-soluble to amphiphilic resulted in a certain increase in the cytotoxicity and a decrease in cell line-specificity. Importantly, Ag(II) porphyrin showed less toxicity to normal cells and greater toxicity to their cancerous counterparts as compared to cisplatin. The amphiphilic complex was also not genotoxic and demonstrated a slight cytostatic effect via the cell cycle delay due to the prolongation of S-phase. As expected, the performed structural modification affected also the photocytotoxic activity of metal-free amphiphilic porphyrin. The ligand tested on cancer cell line revealed a dramatic (more than 70-fold) amplification of its phototoxic activity as compared to its water-soluble tetracationic metal-free analog. The compound combines low dark cytotoxicity with 5 fold stronger phototoxicity relative to Chlorin e6 and could be considered as a potential photosensitizer for further development in photodynamic therapy.


Assuntos
Antineoplásicos/farmacologia , Porfirinas/química , Prata/química , Antineoplásicos/química , Cátions , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray
4.
J Biomol Struct Dyn ; 31(4): 363-75, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22871064

RESUMO

Porphyrins have a unique aromatic structure determining particular photochemical properties that make them promising photosensitizers for anticancer therapy. Previously, we synthesized a set of artificial porphyrins by modifying side-chain functional groups and introducing different metals into the core structure. Here, we have performed a comparative study of the binding properties of 29 cationic porphyrins with plasma proteins by using microarray and spectroscopic approaches. The porphyrins were noncovalently immobilized onto hydrogel-covered glass slides and probed to bio-conjugated human and bovine serum albumins, as well as to human hemoglobin. The signal detection was carried out at the near-infrared fluorescence wavelength (800 nm) that enabled the effect of intrinsic visible wavelength fluorescence emitted by the porphyrins tested to be discarded. Competition assays on porphyrin microarrays indicated that long-chain fatty acids (FAs) (palmitic and stearic acids) decrease porphyrin binding to both serum albumin and hemoglobin. The binding affinity of different types of cationic porphyrins for plasma proteins was quantitatively assessed in the absence and presence of FAs by fluorescent and absorption spectroscopy. Molecular docking analysis confirmed results that new porphyrins and long-chain FAs compete for the common binding site FA1 in human serum albumin and meso-substituted functional groups in porphyrins play major role in the modulation of conformational rearrangements of the protein.


Assuntos
Proteínas Sanguíneas/metabolismo , Porfirinas/metabolismo , Análise Serial de Proteínas/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Animais , Ligação Competitiva/efeitos dos fármacos , Proteínas Sanguíneas/química , Cátions , Bovinos , Simulação por Computador , Hemoglobinas/química , Hemoglobinas/metabolismo , Humanos , Cinética , Modelos Moleculares , Conformação Molecular , Ácidos Palmíticos/metabolismo , Ácidos Palmíticos/farmacologia , Porfirinas/química , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Estrutura Terciária de Proteína , Albumina Sérica/química , Albumina Sérica/metabolismo , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Ácidos Esteáricos/metabolismo , Ácidos Esteáricos/farmacologia
5.
Chem Commun (Camb) ; 48(99): 12088-90, 2012 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-23143019

RESUMO

Reaction of NO with amorphous Mn(TPP) layers gives two Mn(TPP)(NO) isomers with linear and bent Mn-N-O geometries that reversibly interconvert with changes in temperature. DFT computations predict that the linear complex is the singlet ground state while the bent structure is a triplet state.


Assuntos
Complexos de Coordenação/química , Manganês/química , Óxido Nítrico/química , Isomerismo , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
6.
Int J Toxicol ; 26(6): 497-502, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18066965

RESUMO

Porphyrins and porphyrin derivatives have an outstanding potential for discovery of novel pharmacological agents due to their ability for numerous chemical modifications and a variety of mechanisms of biological effects. New water-soluble Ag and Zn derivatives of tetrachloride meso-tetra (4-N-oxiethylpyridyl) porphyne were synthesized. Cyto- and genotoxicity of these substances were tested in vitro by the vital dye (trypan blue) exclusion and the micronucleus tests, respectively. Both metalloporphyrins were shown to be cytotoxic for Cos-7 (fibroblast-like African green monkey kidney cells transformed by simian virus 40 [SV40]), DU 145 (epithelial-like cells of human prostate carcinoma), and K-562 (human chronic myeloid leukemia cells) cell lines. At the same time they did not cause chromosome fragmentation in K-562 cell line at as high concentrations as IC(50) (20 micromol/L for Ag and 70 micromol/L for Zn derivative). Thus, the metalloporphyrins tested meet at least two important demands to potential anticancer drugs as they combine the cytotoxicity with low genotoxicity. The three in vitro tumor models used are relevant to further in vitro and in vivo preclinical investigation of the studied metalloporphyrins as potential chemotherapeutics.


Assuntos
Antineoplásicos/toxicidade , Metaloporfirinas/toxicidade , Animais , Células COS , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Humanos , Células K562 , Testes para Micronúcleos , Solubilidade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...