Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Biochem ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349465

RESUMO

Mesenchymal stem cells (MSCs) may play a pivotal role in shaping the tumor microenvironment (TME), influencing tumor growth. Nonetheless, conflicting evidence exists regarding the distinct impacts of MSCs on tumor progression, with some studies suggesting promotion while others indicate suppression of tumor cell growth. Considering that oxidative stress is implicated in the dynamic interaction between components of the TME and tumor cells, we investigated the contribution of exosomes released by hydrogen peroxide (H2O2)-treated MSCs to murine mammary tumor growth and progression. Additionally, we aimed to identify the underlying mechanism through which MSC-derived exosomes affect breast tumor growth and angiogenesis. Our findings demonstrated that exosomes released by H2O2-treated, stress-induced MSCs (St-MSC Exo) promoted breast cancer cell progression by inducing the expression of vascular endothelial growth factor (VEGF) and markers associated with epithelial-to-mesenchymal transition. Further clarification revealed that the promoting effect of St-MSC Exo on VEGF expression may, in part, depend on activating STAT3 signaling in BC cells. In contrast, exosomes derived from untreated MSCs retarded JAK1/STAT3 phosphorylation and reduced VEGF expression. Additionally, our observations revealed that the activation of the transcription factor NF-κB in BC cells, stimulated with St-MSC Exo, occurs concurrently with an increase in intracellular ROS production. Moreover, we observed that the increase in VEGF secretion into the conditioned media of 4T1 BC, mediated by St-MSC Exo, positively influenced endothelial cell proliferation, migration, and vascular behavior in vitro. In turn, our in vivo studies confirmed that St-MSC Exo, but not exosomes derived from untreated MSCs, exhibited a significant promoting effect on breast tumorigenicity. Collectively, our findings provide new insights into how MSCs may contribute to modulating the TME. We propose a novel mechanism through which exosomes derived from oxidative stress-induced MSCs may contribute to tumor progression and angiogenesis.

2.
Biochem Pharmacol ; 219: 115913, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37995981

RESUMO

The role of cancer stem cells in metastasis, recurrence, and resistance to conventional therapies is significant. Addressing these cells could potentially decrease cancer reoccurrences and mortality rates. TET1, a crucial gene involved in stem cell self-renewal and potency, may also play a part in cancer stem cells, which warrants further research. To explore the role of TET1 in cancer stem cells, we conducted experiments involving loss and gain. We then analyzed factors such as migration, invasion, cell cycle, cell viability, mammosphere formation, and the CD44+/CD24- subpopulation of cancer cells. We also investigate the influence of TET1 on CCNB1, CDK1, and OCT4. Our study reveals that TET1 can regulate the phenotype of cancer stem cells via OCT4. Additionally, it can control the cell cycle by increasing CDK1 and CCNB1 levels. These findings suggest that targeting DNA methylation and TET1 could be an effective strategy to overcome obstacles posed by Cancer stem cells. Our research also indicates that TET1 can influence the phenotype of cancer stem cells and the cell cycle of breast cancer cells potentially through OCT4, CCNB1, and CDK1. This highlights the importance of TET1 in breast cancer cases and suggests a potential therapeutic approach through DNA methylation and modulation of TET1.


Assuntos
Oxigenases de Função Mista , Proteínas Proto-Oncogênicas , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Ciclo Celular , Linhagem Celular Tumoral , Desmetilação do DNA , Metilação de DNA , Oxigenases de Função Mista/genética , Células-Tronco Neoplásicas/patologia , Proteínas Proto-Oncogênicas/genética , Neoplasias de Mama Triplo Negativas/genética
3.
Sci Rep ; 13(1): 1154, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670207

RESUMO

Many attempts have been made to induce high-quality embryonic stem cells such as pluripotent stem cells and totipotent stem cells, but challenges remain to be overcome such as appropriate methods and sources. Demethylation of the genome after fertilization is an important step to initiate zygote gene activation, which can lead to the development of new embryos. Here, we tried to induce totipotent stem cells by mimicking DNA demethylation patterns of the embryo. Our data showed, after induction of DNA demethylation via chemicals or knockdown of Dnmts, cells positive for Nanog, and Cdx2 emerged. These cells could differentiate into the pluripotent and trophoblast lineage cells in-vitro. After transferring these cells to the uterus, they can implant and form embryo-like structures. Our study showed the importance of DNA demethylation roles in totipotent stem cell induction and a new and easy way to induce this cell type.


Assuntos
Desmetilação do DNA , Células-Tronco Pluripotentes , Feminino , Humanos , Células-Tronco Embrionárias , Fibroblastos , Trofoblastos/metabolismo , Reprogramação Celular/genética , Diferenciação Celular/genética , Metilação de DNA
4.
Genes (Basel) ; 14(1)2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36672872

RESUMO

Early-stage leukemia identification is crucial for effective disease management and leads to an improvement in the survival of leukemia patients. Approaches based on cutting-edge biomarkers with excellent accuracy in body liquids provide patients with the possibility of early diagnosis with high sensitivity and specificity. Non-coding RNAs have recently received a great deal of interest as possible biomarkers in leukemia due to their participation in crucial oncogenic processes such as proliferation, differentiation, invasion, apoptosis, and their availability in body fluids. Recent studies have revealed a strong correlation between leukemia and the deregulated non-coding RNAs. On this basis, these RNAs are also great therapeutic targets. Based on these advantages, we tried to review the role of non-coding RNAs in leukemia. Here, the significance of several non-coding RNA types in leukemia is highlighted, and their potential roles as diagnostic, prognostic, and therapeutic targets are covered.


Assuntos
Leucemia , Humanos , Biomarcadores , Leucemia/diagnóstico , Leucemia/genética , Leucemia/terapia , RNA , Prognóstico
5.
J Transl Med ; 20(1): 559, 2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463188

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAFs), one of the major components of the tumor stroma, contribute to an immunosuppressive tumor microenvironment (TME) through the induction and functional polarization of protumoral macrophages. We have herein investigated the contribution of CAFs to monocyte recruitment and macrophage polarization. We also sought to identify a possible paracrine mechanism by which CAF-educated monocytes affect breast cancer (BC) cell progression. METHODS: Monocytes were educated by primary CAFs and normal fibroblast (NF); the phenotypic alterations of CAF- or NF-educated monocytes were measured by flow cytometry. Exosomes isolated from the cultured conditioned media of the educated monocytes were characterized. An in vivo experiment using a subcutaneous transplantation tumor model in athymic nude mice was conducted to uncover the effect of exosomes derived from CAF- or NF-educated monocytes on breast tumor growth. Gain- and loss-of-function experiments were performed to explore the role of miR-181a in BC progression with the involvement of the AKT signaling pathway. Western blotting, enzyme-linked immunosorbent assay, RT-qPCR, flow cytometry staining, migration assay, immunohistochemical staining, and bioinformatics analysis were performed to reveal the underlying mechanisms. RESULTS: We illustrated that primary CAFs recruited monocytes and established pro-tumoral M2 macrophages. CAF may also differentiate human monocyte THP-1 cells into anti-inflammatory M2 macrophages. Besides, we revealed that CAFs increased reactive oxygen species (ROS) generation in THP-1 monocytes, as differentiating into M2 macrophages requires a level of ROS for proper polarization. Importantly, T-cell proliferation was suppressed by CAF-educated monocytes and their exosomes, resulting in an immunosuppressive TME. Interestingly, CAF-activated, polarized monocytes lost their tumoricidal abilities, and their derived exosomes promoted BC cell proliferation and migration. In turn, CAF-educated monocyte exosomes exhibited a significant promoting effect on BC tumorigenicity in vivo. Of clinical significance, we observed that up-regulation of circulating miR-181a in BC was positively correlated with tumor aggressiveness and found a high level of this miRNA in CAF-educated monocytes and their exosomes. We further clarified that the pro-oncogenic effect of CAF-educated monocytes may depend in part on the exosomal transfer of miR-181a through modulating the PTEN/Akt signaling axis in BC cells. CONCLUSIONS: Our findings established a connection between tumor stromal communication and tumor progression and demonstrated an inductive function for CAF-educated monocytes in BC cell progression. We also proposed a supporting model in which exosomal transfer of miR-181a from CAF-educated monocytes activates AKT signaling by regulating PTEN in BC cells.


Assuntos
Neoplasias da Mama , Fibroblastos Associados a Câncer , MicroRNAs , Monócitos , Microambiente Tumoral , Animais , Humanos , Camundongos , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Fibroblastos Associados a Câncer/imunologia , Macrófagos/imunologia , Camundongos Nus , MicroRNAs/genética , MicroRNAs/imunologia , Monócitos/imunologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Espécies Reativas de Oxigênio , Transdução de Sinais , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
6.
Front Oncol ; 12: 966083, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36132137

RESUMO

Multidrug resistance is one of the major obstacles in the treatment of cancers. This undesirable feature increases the mortality rate of cancers, including breast cancer. Circular RNA (CircRNA)/microRNA (miRNA)/messenger RNA (mRNA) is one of the important axes with major roles in the promotion and resistance of breast cancer. This heterogeneous pathway includes mRNA of oncogenes and tumor suppressors, which are controlled by miRNAs and CircRNAs. Unfortunately, this network could be easily deregulated, resulting in drug resistance and tumor development. Therefore, understanding these dysregulations may thus help to identify effective therapeutic targets. On this basis, we try to review the latest findings in the field, which could help us to better comprehend this significant axis in breast cancer.

7.
Life Sci ; 309: 120975, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36126723

RESUMO

AIMS: Circular RNAs (circRNAs) are endogenous covalently closed non-coding RNAs produced by reverse splicing of linear RNA. These molecules are highly expressed in mammalian cells and show cell/tissue-specific expression patterns. They are also significantly dysregulated in various cancers and function as oncogenes or tumor suppressors. Emerging evidence reveals that circRNAs contribute to cancer progression via modulating different cell signaling pathways. Nevertheless, the functional significance of circRNAs in cell signaling pathways regulation is still largely elusive. Considering this, shedding light on the multi-pathway effects of circRNAs may improve our understanding of targeted cancer therapy. Here, we discuss how circRNAs regulate the major cell signaling pathways in human cancers. MATERIALS AND METHODS: We adopted a systematic search in PubMed using the following MeSH terms: circRNAs, non-coding RNAs, lncRNAs, exosomal circRNAs, cancer, and cell signaling. KEY FINDINGS: We discussed different roles of circRNAs during tumorigenesis in which circRNAs affect tumor development through activating or inactivating certain cell signaling pathways via molecular interactions using various signaling pathways. We also discussed how crosstalk between circRNAs and lncRNAs modulate tumorigenesis and provides a resource for the identification of cancer therapeutic targets. SIGNIFICANCE: We here elucidated how circRNAs can modulate different cell signaling pathways and play roles in cancer. This can broaden our horizons toward introducing promising prognostic, diagnostic, and therapeutic targets.


Assuntos
Neoplasias , RNA Longo não Codificante , Animais , Humanos , RNA Circular/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias/genética , Neoplasias/diagnóstico , Transdução de Sinais/genética , Carcinogênese , Mamíferos/genética , Mamíferos/metabolismo
8.
Stem Cell Res ; 63: 102857, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35872523

RESUMO

Totipotent stem cells are cells with the capacity to form an entire embryo. Many attempts have been made to convert other types of cells to totipotent stem cells which we called induced totipotent stem cells. Various aspects of these cells such as transcriptional and epigenetics networks are unique. By taking advantage of these aspects, efficient methods have been provided to induce totipotent stem cells. Although this advancement is significant, many aspects of induction such as the underlying mechanism remain to be elucidated. On the other hand, embryonic stem cells usually are the source of induction which raise important questions regarding if these methods are induction or promotion of 2C intrinsic totipotent cells in ESC culture. Here, we review the latest mouse progress in underling mechanism of induction of totipotent stem cells. In addition, we follow up on the progress of Blastoids derived from totipotent stem cells.


Assuntos
Células-Tronco Embrionárias , Células-Tronco Totipotentes , Animais , Diferenciação Celular , Embrião de Mamíferos , Epigênese Genética , Camundongos
9.
Prog Biophys Mol Biol ; 153: 17-22, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31901417

RESUMO

DNA methylation is an epigenetic factor, which plays important roles in embryo and many other diseases development. This factor determines gene expression, and when half of them have CpG islands, DNA methylation and its enzyme effectors have been under the vast studies. Whole genome DNA demethylation is a crucial step of embryogenesis and also cell fate determination in embryos. Therefore, demethylation agents were used as a tool for dedifferentiation and transdifferentiation. Although many of these efforts have been successful, but using this method gave us a vast spectral cell type which is confusing. In this article, we briefly reviewed DNA methylation, and its role in embryogenesis and gene expression. In addition to that, we introduce studies that used this action as a direct method in induction of stem cells and cell fate decision.


Assuntos
Metilação de DNA , Células-Tronco/citologia , Animais , Diferenciação Celular , Humanos , Células-Tronco/metabolismo
10.
Forensic Sci Int ; 303: 109931, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31546160

RESUMO

Clinical and research-based tests in molecular biology require a substantial amount of DNA and RNA, unfortunately, a considerable number of cells is needed for this amount of sample. Blood is one of the best and easiest source of cells, but is not used due to its invasive drawing methods and the needed volume. Another considerable point is the low amount of samples detected in crime scenes. TRI reagent is one of the most available methods for DNA, RNA and protein extraction. However, based on unsuccessful results, this method has not been widely used on blood samples. In this study, for the first time, the use of TRI reagent on micro scale blood volume was reported, resulting in high yield of DNA and RNA with great quality.


Assuntos
DNA/isolamento & purificação , Medicina Legal/métodos , Indicadores e Reagentes , RNA/isolamento & purificação , Adolescente , Adulto , DNA/sangue , Eletroforese em Gel Bidimensional , Feminino , Humanos , Masculino , Reação em Cadeia da Polimerase , RNA/sangue , Adulto Jovem
11.
Lasers Surg Med ; 51(8): 742-750, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31094015

RESUMO

BACKGROUND AND OBJECTIVE: Optical reflectance spectroscopy is a non-invasive technique for optical characterization of biological samples. Any alteration in a cell from normal or carcinogenic causes will change its refractive index. The aim of this study is to develop a computerized program for extraction of a refractive index of normal and cancerous skin cell lines, including melanoma, fibroblast, and adipose cells, using visible near-infrared reflectance spectra and the Kramers-Kronig (K-K) relations. MATERIALS AND METHOD: A fiber optic reflectance spectrometer in visible near-infrared wavelength was used for spectrum acquisition in an in vitro study. Human skin cell lines for melanoma (A375), fibroblast, and adipose sample were cultured for optical spectroscopy. Following data acquisition, an analytical MATLAB code was developed to run the K-K relations. The program was validated for three biological samples using an Abbe refractometer. RESULTS: The validation error (below 5%) and determination of changes in the refractive index of melanoma, normal fibroblasts, and adipose skin cells was carried out at wavelengths of 450-950 nm. The refractive index of melanoma was 1.59270 ± 0.0550 at 450 nm, the minimum amount of 1.27790 ± 0.0550 to 1.321 ± 0.0550 at 620 nm, and rose sharply to 1.44321 ± 0.0550 at 935 nm. The respective results for fibroblast and adipose tissue cells were 1.33282 ± 0.0134 and 1.28345 ± 0.0163 at 450 nm with an increasing trend to 1.30494 ± 0.0135 and 1.26716 ± 0.0163 at 935 nm. CONCLUSION: Refractive index characteristics show potential for cancer screening and diagnosis. The results show that optical spectroscopy is a promising, non-invasive tool for assessment of the refractive index of living biological cells in in vitro settings. Tracking changes in the refractive index allows screening of normal and abnormal cells for probable alterations in a non-invasive label-free method. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.


Assuntos
Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/patologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Estudos de Casos e Controles , Células Cultivadas , Valores de Referência , Reprodutibilidade dos Testes , Estudos de Amostragem , Sensibilidade e Especificidade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...