Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 152(5): 1121-1130.e10, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37277072

RESUMO

BACKGROUND: There is a need for new and effective oral asthma therapies. Dexpramipexole, an oral eosinophil-lowering drug, has not previously been studied in asthma. OBJECTIVE: We sought to evaluate the safety and efficacy of dexpramipexole in lowering blood and airway eosinophilia in subjects with eosinophilic asthma. METHODS: We performed a randomized, double-blind, placebo-controlled proof-of-concept trial in adults with inadequately controlled moderate to severe asthma and blood absolute eosinophil count (AEC) greater than or equal to 300/µL. Subjects were randomly assigned (1:1:1:1) to dexpramipexole 37.5, 75, or 150 mg BID (twice-daily) or placebo. The primary end point was the relative change in AEC from baseline to week 12. Prebronchodilator FEV1 week-12 change from baseline was a key secondary end point. Nasal eosinophil peroxidase was an exploratory end point. RESULTS: A total of 103 subjects were randomly assigned to dexpramipexole 37.5 mg BID (N = 22), 75 mg BID (N = 26), 150 mg BID (N = 28), or placebo (N = 27). Dexpramipexole significantly reduced placebo-corrected AEC week-12 ratio to baseline, in both the 150-mg BID (ratio, 0.23; 95% CI, 0.12-0.43; P < .0001) and the 75-mg BID (ratio, 0.34; 95% CI, 0.18-0.65; P = .0014) dose groups, corresponding to 77% and 66% reductions, respectively. Dexpramipexole reduced the exploratory end point of nasal eosinophil peroxidase week-12 ratio to baseline in the 150-mg BID (median, 0.11; P = .020) and the 75-mg BID (median, 0.17; P = .021) groups. Placebo-corrected FEV1 increases were observed starting at week 4 (nonsignificant). Dexpramipexole displayed a favorable safety profile. CONCLUSIONS: Dexpramipexole demonstrated effective eosinophil lowering and was well tolerated. Additional larger clinical trials are needed to understand the clinical efficacy of dexpramipexole in asthma.


Assuntos
Antiasmáticos , Asma , Eosinofilia Pulmonar , Adulto , Humanos , Pramipexol/farmacologia , Pramipexol/uso terapêutico , Peroxidase de Eosinófilo , Asma/tratamento farmacológico , Eosinofilia Pulmonar/tratamento farmacológico , Eosinófilos , Resultado do Tratamento , Método Duplo-Cego , Antiasmáticos/uso terapêutico
2.
Circulation ; 136(6): 549-561, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28356446

RESUMO

BACKGROUND: In the heart, acute injury induces a fibrotic healing response that generates collagen-rich scarring that is at first protective but if inappropriately sustained can worsen heart disease. The fibrotic process is initiated by cytokines, neuroendocrine effectors, and mechanical strain that promote resident fibroblast differentiation into contractile and extracellular matrix-producing myofibroblasts. The mitogen-activated protein kinase p38α (Mapk14 gene) is known to influence the cardiac injury response, but its direct role in orchestrating programmed fibroblast differentiation and fibrosis in vivo is unknown. METHODS: A conditional Mapk14 allele was used to delete the p38α encoding gene specifically in cardiac fibroblasts or myofibroblasts with 2 different tamoxifen-inducible Cre recombinase-expressing gene-targeted mouse lines. Mice were subjected to ischemic injury or chronic neurohumoral stimulation and monitored for survival, cardiac function, and fibrotic remodeling. Antithetically, mice with fibroblast-specific transgenic overexpression of activated mitogen-activated protein kinase kinase 6, a direct inducer of p38, were generated to investigate whether this pathway can directly drive myofibroblast formation and the cardiac fibrotic response. RESULTS: In mice, loss of Mapk14 blocked cardiac fibroblast differentiation into myofibroblasts and ensuing fibrosis in response to ischemic injury or chronic neurohumoral stimulation. A similar inhibition of myofibroblast formation and healing was also observed in a dermal wounding model with deletion of Mapk14. Transgenic mice with fibroblast-specific activation of mitogen-activated protein kinase kinase 6-p38 developed interstitial and perivascular fibrosis in the heart, lung, and kidney as a result of enhanced myofibroblast numbers. Mechanistic experiments show that p38 transduces cytokine and mechanical signals into myofibroblast differentiation through the transcription factor serum response factor and the signaling effector calcineurin. CONCLUSIONS: These findings suggest that signals from diverse modes of injury converge on p38α mitogen-activated protein kinase within the fibroblast to program the fibrotic response and myofibroblast formation in vivo, suggesting a novel therapeutic approach with p38 inhibitors for future clinical application.


Assuntos
Fibroblastos/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/genética , Actinas/metabolismo , Alelos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular , Células Cultivadas , Citocinas/metabolismo , Fibroblastos/citologia , Fibrose , Ventrículos do Coração/diagnóstico por imagem , Isquemia/etiologia , Isquemia/metabolismo , Isquemia/patologia , Rim/metabolismo , Rim/patologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína Quinase 14 Ativada por Mitógeno/deficiência , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Transdução de Sinais
3.
Nat Commun ; 6: 10084, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26670661

RESUMO

The differentiation of fibroblasts into myofibroblasts mediates tissue wound healing and fibrotic remodelling, although the molecular programme underlying this process remains poorly understood. Here we perform a genome-wide screen for genes that control myofibroblast transformation, and identify the RNA-binding protein muscleblind-like1 (MBNL1). MBNL1 overexpression promotes transformation of fibroblasts into myofibroblasts, whereas loss of Mbnl1 abrogates transformation and impairs the fibrotic phase of wound healing in mouse models of myocardial infarction and dermal injury. Mechanistically, MBNL1 directly binds to and regulates a network of differentiation-specific and cytoskeletal/matrix-assembly transcripts to promote myofibroblast differentiation. One of these transcripts is the nodal transcriptional regulator serum response factor (SRF), whereas another is calcineurin Aß. CRISPR-Cas9-mediated gene-editing of the MBNL1-binding site within the Srf 3'UTR impairs myofibroblast differentiation, whereas in vivo deletion of Srf in fibroblasts impairs wound healing and fibrosis. These data establish a new RNA-dependent paradigm for myofibroblast formation through MBNL1.


Assuntos
Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Fibrose/genética , Fibrose/metabolismo , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibrose/fisiopatologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , RNA/genética , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...