Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 791: 148254, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34412387

RESUMO

Multifunctional crops can simultaneously contribute to multiple societal objectives. As a result, they represent an attractive means for improving rural livelihoods. Moringa oleifera is an example of a multifunctional crop that produces nutritious leaves with uses as food, fodder, and a biostimulant to enhance crop growth. It yields seeds containing a water purifying coagulant and oil with cosmetic uses and possible biofuel feedstock. Despite Moringa oleifera's (and other multifunctional crops') various Food-Energy-Water uses, optimizing the benefits of its multiple uses and livelihood improvements remains challenging. There is a need for holistic approaches capable of assessing the multifunctionality of agriculture and livelihood impacts. Therefore, this paper critically evaluates Moringa oleifera's Food-Energy-Water-Livelihood nexus applications to gain insight into the tradeoffs and synergies among its various applications using a systems thinking approach. A systems approach is proposed as a holistic thinking framework that can help navigate the complexity of a crop's multifunctionality. The "Success to the Successful" systems archetype was adopted to capture the competition between the need for leaf yields and seed yields. In areas where there is energy and water insecurity, Moringa oleifera seed production is recommended for its potential to coproduce oil, the water purifying coagulant, and a residue that can be applied as a fertilizer. In areas where food insecurity is an issue, focusing on leaf production would be beneficial due to its significance in augmenting food for human consumption, animal feed, and its use as a biostimulant to increase crop yields. A causal loop diagram was found to effectively map the interconnections among the various uses of Moringa oleifera and associated livelihood improvements. This framework provides stakeholders with a conceptual decision-making tool that can help maximize positive livelihood outcomes. This approach can also be applied for improved management of other multifunctional crops.


Assuntos
Moringa oleifera , Água , Animais , Produtos Agrícolas , Humanos , Sementes , Análise de Sistemas
2.
J Environ Manage ; 181: 108-117, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27327859

RESUMO

There is no known effective treatment for fluoride-related health disorders, hence prevention through water defluoridation is necessary. This study explored the possibility of modifying the physico-chemical properties of bauxite, a locally available material in many countries including Ghana, by thermal treatment and an aluminum coating, for water defluoridation. The study mainly focused on investigating the effects of varying synthesis process conditions on the defluoridation efficiency of Granular Aluminum Coated Bauxite (GACB). GACB performed better than raw bauxite (RB) and was able to reduce fluoride concentration in groundwater from 5 ± 0.2 mg/L to ≤ 1.5 mg/L, World Health Organization (WHO) guideline. Based on nonlinear Chi-square (χ(2)) analysis, the best-fitting isotherm model for the fluoride-GACB system was in the order: Freundlich > Redlich-Perterson ≈ Langmuir > Temkin. The fluoride adsorption capacity of GACB (qmax = 12.29 mg/g) based on the Langmuir model was found to be either comparable or higher than the capacities of some reported fluoride adsorbents. Aluminum (Al) coating procedures optimized in this study could therefore be a useful approach for synthesizing an effective fluoride adsorbent using bauxite, a locally available material. Kinetic and isotherm analysis, thermodynamic calculations, as well as FTIR and Raman analysis suggested the mechanism of fluoride adsorption onto GACB was complex and involved both physical adsorption and chemisorption processes.


Assuntos
Óxido de Alumínio/química , Alumínio/química , Fluoretos/química , Água Subterrânea/química , Purificação da Água/métodos , Adsorção , Fluoretos/análise , Gana , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Termodinâmica , Poluentes Químicos da Água/química
3.
Water Res ; 39(11): 2338-44, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15921719

RESUMO

Use of extracts from Moringa oleifera (MO) is of great interest for low-cost water treatment. This paper discusses water and salt extraction of a coagulant protein from the seed, purification using ion exchange, its chemical characteristics, coagulation and antimicrobial properties. The coagulant from both extracts is a cationic protein with pI greater than 9.6 and molecular mass less than 6.5 kDa. Mass spectrometric analysis of the purified water extract indicated that it contained at least four homologous proteins, based on MS/MS peptide sequence data. The protein is thermoresistant and remained active after 5h heat treatment at 95 degrees C. The coagulant protein showed both flocculating and antibacterial effects of 1.1--4 log reduction. With samples of high turbidity, the MO extract showed similar coagulation activity as alum. Cecropin A and MO extract were found to have similar flocculation effects for clay and microorganisms. Simple methods for both the purification and assay of MO coagulating proteins are presented, which are necessary for large-scale water treatment applications.


Assuntos
Moringa oleifera/química , Proteínas de Plantas/química , Sementes/química , Antibacterianos/química , Antibacterianos/farmacologia , Bacillus thuringiensis/efeitos dos fármacos , Cromatografia , Escherichia coli/efeitos dos fármacos , Troca Iônica , Espectrometria de Massas , Pseudomonas aeruginosa/efeitos dos fármacos , Cloreto de Sódio , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...