Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 6(14): 8199-207, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24926835

RESUMO

Plasmonic metal nanostructures have shown great potential in sensing, photovoltaics, imaging and biomedicine, principally due to the enhancement of local electric field by light-excited surface plasmons, i.e., collective oscillation of conduction band electrons. Thin films of nanoporous gold have received a great deal of interest due to the unique 3-dimensional bicontinuous nanostructures with high specific surface area. However, in the form of semi-infinite thin films, nanoporous gold exhibits weak plasmonic extinction and little tunability in the plasmon resonance, because the pore size is much smaller than the wavelength of light. Here we show that by making nanoporous gold in the form of disks of sub-wavelength diameter and sub-100 nm thickness, these limitations can be overcome. Nanoporous gold disks not only possess large specific surface area but also high-density, internal plasmonic "hot-spots" with impressive electric field enhancement, which greatly promotes plasmon-matter interactions as evidenced by spectral shifts in the surface plasmon resonance. In addition, the plasmonic resonance of nanoporous gold disks can be easily tuned from 900 to 1850 nm by changing the disk diameter from 300 to 700 nm. Furthermore, nanoporous gold disks can be fabricated as either bound on a surface or as non-aggregating colloidal suspension with high stability.

2.
Nanoscale ; 5(10): 4105-9, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23334234

RESUMO

Monolithic hierarchical nanoporous gold disks, 500 nm in diameter, 75 nm in thickness and 3.5 nm in pore radius, have been fabricated by hybrid processes. A surface-enhanced Raman scattering enhancement factor of at least 10(8) has been obtained on individual disks using benzenethiol self-assembled monolayer with 785 nm laser excitation.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Fenóis/química , Análise Espectral Raman , Compostos de Sulfidrila/química , Tamanho da Partícula , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...