Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mikrochim Acta ; 190(1): 37, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36571644

RESUMO

It was demonstrated that the mechanism of the inner filter effect (IFE) can emerge well in the resonance Rayleigh scattering (RRS) technique and be utilized as a new analytical method in the design of innovative IFE-based sensors. To prove this process, silver nanocubes (Ag NCs) with tunable extinction spectra were selected as RRS probes, and three analytes, doxorubicin (DOX), sunitinib (SUN), and Alizarin Red S (ARS), were considered as the typical absorbers. In addition, in the presence of SUN as a typical analyte, the quenching of the RRS signal of Ag NCs, with λmax of 419 nm, was linear in the range 0.01 to 2.5 µM of SUN. The limit of detection (LOD) was 0.0025 µM. The introduced method was then used to develop a dual-signal assay for the ratiometric determination of Al3+ ions. The suggested dual-signal assay was based on the color changes of ARS caused by Al3+ and the IFE between ARS and Ag NCs. The obtained results showed that the two characteristics of response sensitivity and linear dynamic range are very satisfactory for sensing Al3+ ions. The findings of this study demonstrate that the newly developed IFE mechanism can be employed as an attractive and highly efficient analytical technique for measuring different analytes.


Assuntos
Prata , Espalhamento de Radiação , Limite de Detecção , Íons
2.
Sci Rep ; 12(1): 19202, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357771

RESUMO

Despite the presence of light-sensitive species in the polyol synthesis of silver nanocubes, the influence of light on it has yet to be investigated. Herein, we demonstrated that light radiation, by generating plasmon-based hot electrons and subsequently increasing the reduction rate of Ag+ in the system, in addition to enhancing the growth rate of nanocubes, causes twinned seeds, which these seeds are then converted into nanorods and right bipyramids. With shorter, higher energy wavelengths, Ag+ reduction progresses more quickly, resulting in structures with more twin planes. The overlap of the excitation wavelength and the band gap of Ag2S clusters formed in the early stages of synthesis accelerates the rate of reaction at low-energy excitation. According to our findings, the surfactant polyvinylpyrrolidone acts as a photochemical relay to drive the growth of silver nanoparticles. Overall, this work emphasizes the impact of excitation light on polyol synthesis as a technique for generating Ag nanocubes of various sizes.


Assuntos
Nanopartículas Metálicas , Prata , Prata/química , Nanopartículas Metálicas/química , Tamanho da Partícula , Polímeros/química
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 272: 121025, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35184030

RESUMO

Polyol synthesis of silver nanocubes (Ag NCs) under dark conditions yielded nanoparticles with high uniformity and purity, as well as edge lengths of 42 nm with good stability and scattering cross-section. These nanoparticles were characterized by SEM, TEM, and Uv-vis spectroscopy. The presence of polyvinylpyrrolidone (PVP) as a capping agent on the surface of Ag NCs, as well as its satisfactory interaction level with Haloperidol (Hp) as an antipsychotic drug, has led to the use of these nanoparticles as Resonance RayleighScattering (RRS) probe to measure Hp. Indeed, Hp resulted in reducing the RRS signal of Ag NCs, and this change in RRS intensity was linear in the range of 10.0 to 800.0 µg L-1 of Hp. The limits of detection (LOD) and quantification (LOQ) were found to be 1.5 and 5.0 µg L-1, respectively. The influence of interfering species was studied, and it was found that the suggested method has good selectivity and can be used to monitor Hp in actual samples. As a result, this RRS probe operated well in determining Hp in pharmaceutical and human plasma samples with satisfactory recovery.


Assuntos
Nanopartículas Metálicas , Prata , Haloperidol , Humanos , Limite de Detecção , Nanopartículas Metálicas/química , Povidona , Prata/química
4.
Ultrason Sonochem ; 40(Pt A): 1049-1058, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28946402

RESUMO

Maghemite nanoparticles, as an adsorbent, was used for the removal of sulfur species including sulfide, sulfite and thiosulfate from waste water samples by ultrasonic-assisted adsorption method. The characterization of the prepared nanoparticles was carried out by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction and BET technique. The nanoparticles well dispersed in the water. The adsorbent was easily separated magnetically from the solution after loading with adsorbate. According to central composite design, the best experimental conditions including initial pH, the dosage of adsorbent and sonication time were obtained for sulfide, sulfite and thiosulfate. After optimization of the parameters, the removal of analytes in these conditions lead to the highest analytes removal efficiency (above 98%). The adsorption capacity was evaluated using different adsorption isotherm models. The maximum predicted adsorption capacities for sulfide, sulfite and thiosulfate were obtained as 148.5, 122.5 and 119.6mgg-1, respectively. Then, desorption process of the adsorbed thiosulfate was also investigated using sodium hydroxide solution as the solvent and the other conditions affect to desorption were optimized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...