Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Discov ; 9(1): 386, 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865680

RESUMO

The terminal differentiation of lens fiber cells involves elimination of their organelles, which must occur while still maintaining their functionality throughout a lifetime. Removal of non-nuclear organelles is accomplished through induction of autophagy following the spatiotemporal suppression of the PI3K/Akt signaling axis. However, blocking this pathway is not alone sufficient to induce removal of fiber cell nuclei. While the final steps in fiber cell nuclear elimination are highlighted by the appearance of TUNEL-positive nuclei, which are associated with activation of the lens-specific DNaseIIß, there are many steps in the process that precede the appearance of double stranded DNA breaks. We showed that this carefully regulated process, including the early changes in nuclear morphology resulting in nuclear condensation, cleavage of lamin B, and labeling by pH2AX, is reminiscent of the apoptotic process associated with caspase activation. Multiple caspases are known to be expressed and activated during lens cell differentiation. In this study, we investigated the link between two caspase downstream targets associated with apoptosis, ICAD, whose cleavage by caspase-3 leads to activation of CAD, a DNase that can create both single- and double-stranded DNA cleavages, and lamin B, a primary component of the nuclear lamina. We discovered that the specific inhibition of caspase-3 activation prevents both lamin B and DNA cleavage. Inhibiting caspase-3 did not prevent nuclear condensation or removal of the nuclear membrane. In contrast, a pan-caspase inhibitor effectively suppressed condensation of fiber cell nuclei during differentiation. These studies provide evidence that caspases play an important role in the process of removing fiber cell nuclei during lens differentiation.

2.
STAR Protoc ; 4(4): 102569, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37713308

RESUMO

The elimination of lens organelles during development, required for mature lens function, is an autophagy-dependent mechanism induced through suppression of PI3K signaling. Here, we present a protocol for investigating the signaling pathways responsible for induction of the formation of this lens organelle free zone. We describe steps for preparation of lens organ culture and use of signaling pathway inhibitors. We then detail procedures for analyzing their impact using both confocal microscopy imaging of immunolabeled lens cryosections and immunoblot approaches. For complete details on the use and execution of this protocol, please refer to Gheyas et al. (2022).1.


Assuntos
Organelas , Fosfatidilinositol 3-Quinases , Animais , Embrião de Galinha , Olho , Transdução de Sinais , Immunoblotting
3.
Exp Cell Res ; 412(2): 113043, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35101390

RESUMO

The terminal steps of lens cell differentiation require elimination of all organelles to create a central Organelle Free Zone (OFZ) that is required for lens function of focusing images on the retina. Previous studies show that the spatiotemporal elimination of these organelles during development is autophagy-dependent. We now show that the inhibition of PI3K signaling in lens organ culture results in the premature induction of autophagy within 24 h, including a significant increase in LAMP1+ lysosomes, and the removal of lens organelles from the center of the lens. Specific inhibition of just the PI3K/Akt signaling axis was directly linked to the elimination of mitochondria and ER, while pan-PI3K inhibitors that block all PI3K downstream signaling removed all organelles, including nuclei. Therefore, blocking the PI3K/Akt pathway was alone insufficient to remove nuclei. RNAseq analysis revealed increased mRNA levels of the endogenous inhibitor of PI3K activation, PIK3IP1, in differentiating lens fiber cells preceding the induction of OFZ formation. Co-immunoprecipitation confirmed that PIK3IP1 associates with multiple PI3K p110 isoforms just prior to formation of the OFZ, providing a likely endogenous mechanism for blocking all PI3K signaling and activating the autophagy pathway required to form the OFZ during lens development.


Assuntos
Autofagia/fisiologia , Cristalino/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/fisiologia , Animais , Diferenciação Celular/fisiologia , Núcleo Celular/metabolismo , Núcleo Celular/fisiologia , Embrião de Galinha , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Olho/metabolismo , Olho/fisiopatologia , Cristalino/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo
4.
Dev Biol ; 453(1): 86-104, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31136738

RESUMO

Changes in chromatin accessibility regulate the expression of multiple genes by controlling transcription factor access to key gene regulatory sequences. Here, we sought to establish a potential function for altered chromatin accessibility in control of key gene expression events during lens cell differentiation by establishing genome-wide chromatin accessibility maps specific for four distinct stages of lens cell differentiation and correlating specific changes in chromatin accessibility with genome-wide changes in gene expression. ATAC sequencing was employed to generate chromatin accessibility profiles that were correlated with the expression profiles of over 10,000 lens genes obtained by high-throughput RNA sequencing at the same stages of lens cell differentiation. Approximately 90,000 regions of the lens genome exhibited distinct changes in chromatin accessibility at one or more stages of lens differentiation. Over 1000 genes exhibited high Pearson correlation coefficients (r â€‹> â€‹0.7) between altered expression levels at specific stages of lens cell differentiation and changes in chromatin accessibility in potential promoter (-7.5kbp/+2.5kbp of the transcriptional start site) and/or other potential cis-regulatory regions ( ±10 â€‹kb of the gene body). Analysis of these regions identified consensus binding sequences for multiple transcription factors including members of the TEAD, FOX, and NFAT families of transcription factors as well as HIF1a, RBPJ and IRF1. Functional mapping of genes with high correlations between altered chromatin accessibility and differentiation state-specific gene expression changes identified multiple families of proteins whose expression could be regulated through changes in chromatin accessibility including those governing lens structure (BFSP1,BFSP2), gene expression (Pax-6, Sox 2), translation (TDRD7), cell-cell communication (GJA1), autophagy (FYCO1), signal transduction (SMAD3, EPHA2), and lens transparency (CRYBB1, CRYBA4). These data provide a novel relationship between altered chromatin accessibility and lens differentiation and they identify a wide-variety of lens genes and functions that could be regulated through altered chromatin accessibility. The data also point to a large number of potential DNA regulatory sequences and transcription factors whose functional analysis is likely to provide insight into novel regulatory mechanisms governing the lens differentiation program.


Assuntos
Diferenciação Celular/genética , Cromatina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Cristalino/citologia , Animais , Sequência de Bases , Sítios de Ligação , Biomarcadores/metabolismo , Galinhas/genética , Sequência Consenso/genética , DNA/metabolismo , Genoma , Cristalino/metabolismo , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...