Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 172: 113055, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689853

RESUMO

Microalgae rich in omega-3 long-chain polyunsaturated fatty acids (n-3LC-PUFA) have already shown their potential for developing functional food rich in these healthy fatty acids. Not only could they offer a more sustainable alternative for the fish stock that is currently relied upon but is unable to keep up with the demand, enrichment with certain microalgae also leads to oxidatively stable products. Although the reason for this stability has been attributed to the presence of endogenous carotenoids, further insight into their antioxidative role is missing and would be clarifying for selecting the proper microalgae for food enrichment. In trying to further accomplish this, a storage experiment (4 weeks, 37 °C) was set up with the parallel analysis of both oxidation products (primary and secondary) and carotenoids of two aqueous model systems of different (promising) microalgae (Nannochloropsis and Phaeodactylum). The results showed a clear difference in oxidative stability despite both microalgae containing endogenous carotenoids: Nannochloropsis led to oxidatively unstable and Phaeodactylum to oxidatively stable products. This was clearly confirmed by the analysis of n-3LC-PUFA throughout storage which showed a breakdown of half of the n-3LC-PUFA for Nannochloropsis. All carotenoids (violaxanthin, zeaxanthin and ß-carotene for Nannochloropsis, and fucoxanthin and ß-carotene for Phaeodactylum) acted as an antioxidant as shown by their degradation throughout storage, but the difference in oxidative stability pointed out an impact of carotenoid content and (possibly) type. The presence of a sufficient amount of carotenoids seems to be an important factor for perceiving oxidative stability. Phaeodactylum has shown to be more potent for food enrichment.


Assuntos
Ácidos Graxos Ômega-3 , Microalgas , Animais , Antioxidantes , Carotenoides , beta Caroteno , Alimento Funcional , Estresse Oxidativo
2.
Food Chem ; 406: 135044, 2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-36455314

RESUMO

The health-beneficial long-chain omega-3 polyunsaturated fatty acids (n-3 LC-PUFA) are easily affected by the undesired process of lipid oxidation in fish oil, while being stable in the lipid extracts of photoautotrophic microalgae. The current research investigates the role of carotenoids by evaluating the oxidative stability of mixtures of fish oil with total lipid extracts of two different microalgae (Phaeodactylum and Isochrysis) throughout an accelerated storage experiment of 4 weeks at 37 °C. A clear separation between oxidatively stable and oxidatively unstable mixtures was observed for which the initial amount of carotenoids relative to the amount of n-3LC-PUFA was a good indicator. The lipid class composition, clearly differing between the two algae, was probably of minor influence. The antioxidative role of fucoxanthin, and diatoxanthin and ß-carotene as minor carotenoids, was illustrated by their gradual degradation throughout storage. However, when their initial contents were too low, this role could not be exerted leading to thorough lipid oxidation.


Assuntos
Ácidos Graxos Ômega-3 , Microalgas , Microalgas/metabolismo , Antioxidantes/metabolismo , Carotenoides/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Óleos de Peixe/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo
3.
Foods ; 11(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35627032

RESUMO

Worldwide, fish oil is an important and rich source of the health-beneficial omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA). It is, however, troubled by its high susceptibility towards lipid oxidation. This can be prevented by the addition of (preferably natural) antioxidants. The current research investigates the potential of Phaeodactylum carotenoids in this regard. The oxidative stability of fish oil and fish oil with Phaeodactylum addition is evaluated by analyzing both primary (PV) and secondary (volatiles) oxidation products in an accelerated storage experiment (37 °C). A first experimental set-up shows that the addition of 2.5% (w/w) Phaeodactylum biomass is not capable of inhibiting oxidation. Although carotenoids from the Phaeodactylum biomass are measured in the fish oil phase, their presence does not suffice. In a second, more elucidating experimental set-up, fish oil is mixed in different proportions with a Phaeodactylum total lipid extract, and oxidative stability is again evaluated. It was shown that the amount of carotenoids relative to the n-3 LC-PUFA content determined oxidative stability. Systems with a fucoxanthin/n-3 LC-PUFA ratio ≥ 0.101 shows extreme oxidative stability, while systems with a fucoxanthin/n-3 LC-PUFA ratio ≤ 0.0078 are extremely oxidatively unstable. This explains why the Phaeodactylum biomass addition did not induce oxidative stability.

4.
J Agric Food Chem ; 70(18): 5691-5700, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35471935

RESUMO

Several species of microalgae are promising as an alternative source of omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA). Photoautotrophic species show the greatest potential, since incorporating them into food products leads to oxidatively stable products; however, the presence of photosensitizers could reduce the shelf-life due to the appearance of photo-oxidation on exposure to light. This study investigated the oxidative impact of illumination for aqueous model suspensions enriched with Phaeodactylum (phototrophic microalgae─containing potential photosensitizers) and Schizochytrium (heterotrophic microalgae─lacking photosensitizers) during storage for 28 days at 37 °C. Primary (peroxide value) and secondary (volatiles with gas chromatography (GC)-mass spectrometry) oxidation products, n-3 LC-PUFA content (GC), and pigments (high-pressure liquid chromatography) were assessed. The results showed that photo-oxidation did not cause oxidative instability for Phaeodactylum samples compared with strong autoxidation in Schizochytrium samples. For the Phaeodactylum-enriched suspensions, only minimal photo-oxidation could be detected and the n-3 LC-PUFA content remained stable throughout storage regardless of illumination.


Assuntos
Diatomáceas , Ácidos Graxos Ômega-3 , Microalgas , Estramenópilas , Ácidos Graxos Ômega-3/análise , Microalgas/química , Estresse Oxidativo , Fármacos Fotossensibilizantes , Estramenópilas/química , Suspensões
5.
Biotechnol Adv ; 37(8): 107419, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31340183

RESUMO

Microalgae are considered promising functional food ingredients due to their balanced composition, containing multiple nutritional and health-beneficial components. However, their functionality in food products is not limited to health aspects, since microalgae can also play a structuring role in food, for instance as a texturizing ingredient. Photoautotrophic microalgae are actually rich in structural biopolymers such as proteins, storage polysaccharides, and cell wall related polysaccharides, and their presence might possibly alter the rheological properties of the enriched food product. A first approach to benefit from these structural biopolymers consists of isolating the cell wall related polysaccharides for use as food hydrocolloids. The potential of extracted cell wall polysaccharides as food hydrocolloids has only been shown for a few microalgae species, mainly due to an enormous diversity in molecular structure and composition. Nevertheless, with intrinsic viscosities comparable or higher than those of commercial thickening agents, extracellular polysaccharides of red microalgae and cyanobacteria could be a promising source of novel food hydrocolloids. A more sustainable approach would be to incorporate the whole microalgal biomass into food products, to combine health benefits with potential structuring benefits, i.e. providing desired rheological properties of the enriched food product. If microalgal biomass would act as a thickening agent, this would actually reduce the need for additional texturizing ingredients. Even though only limitedly studied so far, food processing operations have been proven successful in establishing desired microstructural and rheological properties. In fact, the use of cell disruption techniques allows the release of intracellular compounds, which become available to create strong particle aggregates resulting in an improved viscosity and network structure. Food processing operations might not only be favorable in terms of rheological properties, but also for enhancing the bioaccessibility of several bioactive compounds. However, this research area is only very scarcely explored, and there is a demand for more standardized research studies to draw conclusions on the effect of processing on the nutritional quality of food products enriched with microalgae. Even though considered as promising food ingredients, some major scientific challenges have been pointed out throughout this review paper for the successful design of microalgal based food products.


Assuntos
Microalgas , Biomassa , Biopolímeros , Manipulação de Alimentos , Polissacarídeos
6.
Food Chem ; 279: 389-400, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30611505

RESUMO

Microalgae are a sustainable alternative source of n-3 LC-PUFA that can be incorporated into the food chain either via the incorporation of the (intact or disrupted) biomass or by the incorporation of the oil extracted from the biomass. However, the impact of the dosage form on the enrichment of food products with n-3 LC-PUFA and their oxidative stability has never been described before. This study aims to contribute more insight on the impact of the dosage form of the photoautotrophic microalga Nannochloropsis in enriched tomato puree. Three different dosage forms of Nannochloropsis were compared to commercial fish oil and analyzed for their amount of n-3 LC-PUFA, lipid oxidation products, antioxidants and free fatty acids. Tomato purees supplemented with dosage forms derived from Nannochloropsis showed higher oxidative stability than those supplemented with commercial fish oil. The highest oxidative stability was observed for purees supplemented with Nannochloropsis biomass irrespective of whether it was pre-disrupted.


Assuntos
Ácidos Graxos Ômega-3/química , Alimentos Fortificados/microbiologia , Solanum lycopersicum/química , Estramenópilas/química , Animais , Ácidos Graxos não Esterificados/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Óleos de Peixe/química , Manipulação de Alimentos/métodos , Metabolismo dos Lipídeos , Solanum lycopersicum/metabolismo , Microalgas/química , Oxirredução , Estresse Oxidativo
7.
Food Chem ; 268: 441-450, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30064781

RESUMO

Microalgae have already shown their potential as an alternative source of n-3 LC-PUFA. In this study, 5 different microalgal species (Isochrysis, Nannochloropsis, Phaeodactylum, Porphyridium and Schizochytrium) were added to an acidic model system and screened on their potential use in acidic food matrices. The impact of mechanical and thermal processing on the model systems was studied by analyzing the amount of n-3 LC-PUFA, free fatty acids, carotenoids, lipid polymers and the oxidative stability. A (limited) reduction of n-3 LC-PUFA was observed. Thermal alterations combined with the presence of free fatty acids seemed to be the causing factor for this decrease. Furthermore, the oxidative stability of model systems enriched with photoautotrophic microalgae was significantly higher than of those enriched with heterotrophic microalgae. It can therefore be concluded that photoautotrophic microalgae low in initial free fatty acid content are a promising source of n-3 LC-PUFA in thermally processed acidic food systems.


Assuntos
Ácidos Graxos Ômega-3/química , Manipulação de Alimentos/métodos , Microalgas/química , Lipídeos , Porphyridium , Estramenópilas
8.
Carbohydr Polym ; 195: 542-550, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29805010

RESUMO

Cell wall related polysaccharides of the red microalga Porphyridium sp. were shown to be a promising source of new sustainable thickening agents. Isolated extracellular polysaccharides (EPS) consisted of high molecular weight polymers, showing a higher intrinsic viscosity compared to several commercially used hydrocolloids. Aqueous solutions of EPS (2% w/w) were characterized by substantial viscosities and weak gel behavior. Even though the extracted water soluble cell wall polysaccharides exhibited the same monosaccharide profile as EPS (composed of galactose, glucose, xylose and glucuronic acid), a lower molecular weight and intrinsic viscosity was observed for this fraction, resulting in poor rheological properties. Therefore, it was hypothesized that the physicochemical properties were related with a different molecular structural organization of these monosaccharides and sulfate groups. The main challenge for commercialization of extracellular polysaccharides of Porphyridium sp. remains the purification of these fractions to obtain polysaccharide extracts with low protein and salt contents.

9.
Food Funct ; 9(4): 2433-2446, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29632927

RESUMO

Microalgae are a promising and sustainable source for enhancing the nutritional value of food products. Moreover, incorporation of the total biomass might contribute to the structural properties of the enriched food product. Our previous study demonstrated the potential of Porphyridium cruentum and Chlorella vulgaris as multifunctional food ingredients, as they displayed interesting rheological properties after applying a specific combination of mechanical and thermal processing. The aim of the current study was to investigate the impact of a different sequence of high pressure homogenization (HPH) and thermal processing on the thickening and gelling potential of these microalgal biomasses in aqueous suspensions. Thermal processing largely increased the gel strength and viscosity of both microalgae, which was ascribed to larger and stronger aggregates as a result of partial solubilization of polymers, while subsequent HPH generally reduced the rheological properties. Interestingly, large amounts of intact cells were still observed for both microalgae when HPH was performed after a thermal treatment, irrespective of the applied homogenization pressure, implying that cell disruption was hindered by the preceding thermal treatment. Although thermal processing was regarded as the most effective processing technique to obtain increased rheological properties, the combination with a preceding HPH treatment should still be considered when cell disruption is desired, for instance to increase the bioavailability of intracellular components. Finally, biomass of P. cruentum showed the largest potential for use as a structuring agent, as the gel strength and viscosity in thermally treated suspensions of this microalga were about 10 times higher than for C. vulgaris.


Assuntos
Chlorella vulgaris/química , Ingredientes de Alimentos/análise , Microalgas/química , Extratos Vegetais/química , Porphyridium/química , Manipulação de Alimentos/instrumentação , Manipulação de Alimentos/métodos , Alimento Funcional/análise , Temperatura Alta , Reologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...