Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Cell Int ; 24(1): 196, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38835027

RESUMO

BACKGROUND: Thyroid cancer (TC) is the most common endocrine malignancy. Nowadays, undifferentiated thyroid cancers (UTCs) are still lethal, mostly due to the insurgence of therapy resistance and disease relapse. These events are believed to be caused by a subpopulation of cancer cells with stem-like phenotype and specific tumor-initiating abilities, known as tumor-initiating cells (TICs). A comprehensive understanding of how to isolate and target these cells is necessary. Here we provide insights into the role that the protein Epithelial Cell Adhesion Molecule (EpCAM), a known TICs marker for other solid tumors, may have in TC biology, thus considering EpCAM a potential marker of thyroid TICs in UTCs. METHODS: The characterization of EpCAM was accomplished through Western Blot and Immunofluorescence on patient-derived tissue samples, adherent cell cultures, and 3D sphere cultures of poorly differentiated thyroid cancer (PDTC) and anaplastic thyroid cancer (ATC) cell lines. The frequency of tumor cells with putative tumor-initiating ability within the 3D cultures was assessed through extreme limiting dilution analysis (ELDA). EpCAM proteolytic cleavages were studied through treatments with different cleavages' inhibitors. To evaluate the involvement of EpCAM in inducing drug resistance, Vemurafenib (PLX-4032) treatments were assessed through MTT assay. RESULTS: Variable EpCAM expression pattern was observed in TC tissue samples, with increased cleavage in the more UTC. We demonstrated that EpCAM is subjected to an intense cleavage process in ATC-derived 3D tumor spheres and that the 3D model faithfully mimics what was observed in patient's samples. We also proved that the integrity of the protein appears to be crucial for the generation of 3D spheres, and its expression and cleavage in a 3D system could contribute to drug resistance in thyroid TICs. CONCLUSIONS: Our data provide novel information on the role of EpCAM expression and cleavage in the biology of thyroid TICs, and our 3D model reflects the variability of EpCAM cleavage observed in tissue samples. EpCAM evaluation could play a role in clinical decisions regarding patient therapy since its expression and cleavage may have a fundamental role in the switch to a drug-resistant phenotype of UTC cells.

2.
Sci Rep ; 12(1): 8608, 2022 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-35597845

RESUMO

FAM83B has been recently identified as an oncogene, but its role in thyroid cancers (TC) is still unclear. We examined the expression of FAM83B and its possible involvement in cell migration and differentiation, in neoplastic/normal thyroid tissues and in TC human cell lines. FAM83B expression in TC varies according to the tumor histotype, being significantly downregulated in more aggressive and metastatic tissues. FAM83B levels in cell lines recapitulate patients' samples variations, and its total and cytoplasmic levels decrease upon the induction of migration, together with an increase in its nuclear localization. Similar variations were detected in the primary tumor and in the metastatic tissues from a follicular TC. FAM83B knock down experiments confirmed its role in thyroid differentiation and cell migration, as demonstrated by the reduction of markers of thyroid differentiation and the increase of the mesenchymal marker vimentin. Moreover, the silencing of FAM83B significantly increased cells migration abilities, while not affecting the oncogenic RAS/MAPK/PI3K pathways. Our data indicate for the first time a role for FAM83B in TC cell differentiation and migration. Its expression is reduced in dedifferentiated tumors and its nuclear re-localization could favour distant migration, suggesting that FAM83B should be considered a possible diagnostic and prognostic biomarker.


Assuntos
Proteínas de Neoplasias , Neoplasias da Glândula Tireoide , Diferenciação Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas de Neoplasias/genética , Neoplasias da Glândula Tireoide/genética
3.
J Clin Med ; 10(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916320

RESUMO

Thyroid cancer (TC) is the most common endocrine malignancy. Recent progress in thyroid cancer biology revealed a certain degree of intratumoral heterogeneity, highlighting the coexistence of cellular subpopulations with distinct proliferative capacities and differentiation abilities. Among those subpopulations, cancer stem-like cells (CSCs) are hypothesized to drive TC heterogeneity, contributing to its metastatic potential and therapy resistance. CSCs principally exist in tumor areas with specific microenvironmental conditions, the so-called stem cell niches. In particular, in thyroid cancer, CSCs' survival is enhanced in the hypoxic niche, the immune niche, and some areas with specific extracellular matrix composition. In this review, we summarize the current knowledge about thyroid CSCs, the tumoral niches that allow their survival, and the implications for TC therapy.

4.
Thyroid ; 31(7): 1030-1040, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33446056

RESUMO

Background: Loss-of-function mutations of thyrotropin receptor (TSHR) are one of the main causes of congenital hypothyroidism. As for many disease-associated G-protein coupled receptors (GPCRs), these mutations often affect the correct trafficking and maturation of the receptor, thus impairing the expression on the cell surface. Several retained GPCR mutants are able to effectively bind their ligands and to transduce signals when they are forced to the cell surface by degradation inhibition or by treatment with chaperones. Despite the large number of well-characterized retained TSHR mutants, no attempts have been made for rescue. Further, little is known about TSHR degradation pathways. We hypothesize that, similar to other GPCRs, TSHR retained mutants may be at least partially functional if their maturation and membrane expression is facilitated by chaperones or degradation inhibitors. Methods: We performed in silico predictions of the functionality of known TSHR variants and compared the results with available in vitro data. Western blot, confocal microscopy, enzyme-linked immunosorbent assays, and dual luciferase assays were used to investigate the effects of degradation pathways inhibition and of chemical chaperone treatments on TSHR variants' maturation and functionality. Results: We found a high discordance rate between in silico predictions and in vitro data for retained TSHR variants, a fact indicative of a conserved potential to initiate signal transduction if these mutants were expressed on the cell surface. We show experimentally that some maturation defective TSHR mutants are able to effectively transduce Gs/cAMP signaling if their maturation and expression are enhanced by using chemical chaperones. Further, through the characterization of the intracellular retained p.N432D variant, we provide new insights on the TSHR degradation mechanism, as our results suggest that aggregation-prone mutant can be directed toward the autophagosomal pathway instead of the canonical proteasome system. Conclusions: Our study reveals alternative pathways for TSHR degradation. Retained TSHR variants can be functional when expressed on the cell surface membrane, thus opening the possibility of further studies on the pharmacological modulation of TSHR expression and functionality in patients in whom TSHR signaling is disrupted.


Assuntos
Autofagossomos/metabolismo , Hipotireoidismo Congênito/genética , Lisossomos/metabolismo , Mutação , Receptores da Tireotropina/genética , Animais , Células COS , Chlorocebus aethiops , Simulação por Computador , Hipotireoidismo Congênito/metabolismo , Humanos , Receptores da Tireotropina/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...