Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Chem ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898213

RESUMO

Bacteria have evolved resistance to nearly all known antibacterials, emphasizing the need to identify antibiotics that operate via novel mechanisms. Here we report a class of allosteric inhibitors of DNA gyrase with antibacterial activity against fluoroquinolone-resistant clinical isolates of Escherichia coli. Screening of a small-molecule library revealed an initial isoquinoline sulfonamide hit, which was optimized via medicinal chemistry efforts to afford the more potent antibacterial LEI-800. Target identification studies, including whole-genome sequencing of in vitro selected mutants with resistance to isoquinoline sulfonamides, unanimously pointed to the DNA gyrase complex, an essential bacterial topoisomerase and an established antibacterial target. Using single-particle cryogenic electron microscopy, we determined the structure of the gyrase-LEI-800-DNA complex. The compound occupies an allosteric, hydrophobic pocket in the GyrA subunit and has a mode of action that is distinct from the clinically used fluoroquinolones or any other gyrase inhibitor reported to date. LEI-800 provides a chemotype suitable for development to counter the increasingly widespread bacterial resistance to fluoroquinolones.

2.
Microbiol Res ; 257: 126973, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35085841

RESUMO

With recent initiatives to ban bisphenol A (BPA) in certain commercial products, manufacturers shifted to the production and use of BPA analogues. However, some of these BPA alternatives still possess endocrine disruptive activities. Many fungal enzymes are known to biodegrade phenolic compounds, such as BPA. However, the activity of these enzymes on BPA analogues remains unexplored. This study reports a secreted laccase from the endophytic fungus Diaporthe longicolla capable of degrading an impressive range of bisphenol analogues. The secreted crude enzymes are optimally active at pH 5 from 39 °C to 60 °C, efficiently degrading BPA as well as BPA analogues BPB, BPC, BPE and BPF. A purified form of laccase was identified from the crude fungal extract using FPLC and peptide sequencing. Furthermore, BPA induced the expression of this D. longicolla laccase gene. Overall, this paper demonstrated that the crude laccase enzyme from D. longicolla metabolizes BPA and select analogues, implicating the potential role of this fungus to remove environmental bisphenols.


Assuntos
Compostos Benzidrílicos , Lacase , Ascomicetos , Lacase/genética , Fenóis , Phomopsis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...