Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Phys Eng Express ; 9(4)2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37336202

RESUMO

Objective. Adaptive Radiotherapy (ART) is an emerging technique for treating cancer patients which facilitates higher delivery accuracy and has the potential to reduce toxicity. However, ART is also resource-intensive, Requiring extra human and machine time compared to standard treatment methods. In this analysis, we sought to predict the subset of node-negative cervical cancer patients with the greatest benefit from ART, so resources might be properly allocated to the highest-yield patients.Approach. CT images, initial plan data, and on-treatment Cone-Beam CT (CBCT) images for 20 retrospective cervical cancer patients were used to simulate doses from daily non-adaptive and adaptive techniques. We evaluated the coefficient of determination (R2) between dose and volume metrics from initial treatment plans and the dosimetric benefits to theBowelV40Gy,BowelV45Gy,BladderDmean,andRectumDmeanfrom adaptive radiotherapy using reduced 3 mm or 5 mm CTV-to-PTV margins. The LASSO technique was used to identify the most predictive metrics forBowelV40Gy.The three highest performing metrics were used to build multivariate models with leave-one-out validation forBowelV40Gy.Main results. Patients with higher initial bowel doses were correlated with the largest decreases in BowelV40Gyfrom daily adaptation (linear best fit R2= 0.77 for a 3 mm PTV margin and R2= 0.8 for a 5 mm PTV margin). Other metrics had intermediate or no correlation. Selected covariates for the multivariate model were differences in the initialBowelV40GyandBladderDmeanusing standard versus reduced margins and the initial bladder volume. Leave-one-out validation had an R2of 0.66 between predicted and true adaptiveBowelV40Gybenefits for both margins.Significance. The resulting models could be used to prospectively triage cervical cancer patients on or off daily adaptation to optimally manage clinical resources. Additionally, this work presents a critical foundation for predicting benefits from daily adaptation that can be extended to other patient cohorts.


Assuntos
Radioterapia Guiada por Imagem , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Estudos Retrospectivos , Radioterapia Guiada por Imagem/métodos , Radiometria/métodos
2.
J Phys Condens Matter ; 35(31)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37071999

RESUMO

We theoretically examine a topological nanospaser that is optically pumped using an ultra-fast circularly-polarized pulse. The spasing system consists of a silver nanospheroid, which supports surface plasmon (SP) excitations, and a transition metal dichalcogenide (TMDC) monolayer nanoflake. The silver nanospheroid screens the incoming pulse and creates a non-uniform spatial distribution of electron excitations in the TMDC nanoflake. These excitations decay into the localized SPs, which can be of two types with the corresponding magnetic quantum number ±1. The amount and the type of the generated SPs depend on the intensity of the optical pulse. For small pulse amplitude, only one plasmonic mode is predominantly generated, resulting in far-field elliptically polarized radiation. For large amplitude of the optical pulse, both plasmonic modes are generated in almost the same amount, resulting in linearly polarized far-field radiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...