Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 10(3)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155952

RESUMO

Recently, several chemical and physical treatments were developed to improve different properties of wood. Such treatments are applicable to many types of cellulose-based materials. Densification leads the group in terms of mechanical results and comprises a chemical treatment followed by a thermo-compression stage. First, chemicals selectively etch the matrix of lignin and hemicellulose. Then, thermo-compression increases the packing density of cellulose microfibrils boosting mechanical performance. In this paper, in comparison with the state-of-the-art for wood treatments we introduce an additional nano-reinforcemeent on densified giant reed to further improve the mechanical performance. The modified nanocomposite materials are stiffer, stronger, tougher and show higher fire resistance. After the addition of nanoparticles, no relevant structural modification is induced as they are located in the gaps between cellulose microfibrils. Their peculiar positioning could increase the interfacial adhesion energy and improve the stress transfer between cellulose microfibrils. The presented process stands as a viable solution to introduce nanoparticles as new functionalities into cellulose-based natural materials.

2.
Cells ; 9(1)2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31905823

RESUMO

Silicon is a promising material for tissue engineering since it allows to produce micropatterned scaffolding structures resembling biological tissues. Using specific fabrication methods, it is possible to build aligned 3D network-like structures. In the present study, we exploited vertically-aligned silicon micropillar arrays as culture systems for human iPSC-derived cortical progenitors. In particular, our aim was to mimic the radially-oriented cortical radial glia fibres that during embryonic development play key roles in controlling the expansion, radial migration and differentiation of cortical progenitors, which are, in turn, pivotal to the establishment of the correct multilayered cerebral cortex structure. Here we show that silicon vertical micropillar arrays efficiently promote expansion and stemness preservation of human cortical progenitors when compared to standard monolayer growth conditions. Furthermore, the vertically-oriented micropillars allow the radial migration distinctive of cortical progenitors in vivo. These results indicate that vertical silicon micropillar arrays can offer an optimal system for human cortical progenitors' growth and migration. Furthermore, similar structures present an attractive platform for cortical tissue engineering.


Assuntos
Técnicas de Cultura de Células/métodos , Silício/química , Engenharia Tecidual/métodos , Astrócitos/citologia , Diferenciação Celular/fisiologia , Córtex Cerebral/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/citologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Silício/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...