Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36850850

RESUMO

A Brain-Computer Music Interface (BCMI) system may be designed to harness electroencephalography (EEG) signals for control over musical outputs in the context of emotionally expressive performance. To develop a real-time BCMI system, accurate and computationally efficient emotional biomarkers should first be identified. In the current study, we evaluated the ability of various features to discriminate between emotions expressed during music performance with the aim of developing a BCMI system. EEG data was recorded while subjects performed simple piano music with contrasting emotional cues and rated their success in communicating the intended emotion. Power spectra and connectivity features (Magnitude Square Coherence (MSC) and Granger Causality (GC)) were extracted from the signals. Two different approaches of feature selection were used to assess the contribution of neutral baselines in detection accuracies; 1- utilizing the baselines to normalize the features, 2- not taking them into account (non-normalized features). Finally, the Support Vector Machine (SVM) has been used to evaluate and compare the capability of various features for emotion detection. Best detection accuracies were obtained from the non-normalized MSC-based features equal to 85.57 ± 2.34, 84.93 ± 1.67, and 87.16 ± 0.55 for arousal, valence, and emotional conditions respectively, while the power-based features had the lowest accuracies. Both connectivity features show acceptable accuracy while requiring short processing time and thus are potential candidates for the development of a real-time BCMI system.


Assuntos
Interfaces Cérebro-Computador , Música , Humanos , Emoções Manifestas , Emoções , Nível de Alerta
2.
Sensors (Basel) ; 22(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35684685

RESUMO

The neural correlates of intentional emotion transfer by the music performer are not well investigated as the present-day research mainly focuses on the assessment of emotions evoked by music. In this study, we aim to determine whether EEG connectivity patterns can reflect differences in information exchange during emotional playing. The EEG data were recorded while subjects were performing a simple piano score with contrasting emotional intentions and evaluated the subjectively experienced success of emotion transfer. The brain connectivity patterns were assessed from the EEG data using the Granger Causality approach. The effective connectivity was analyzed in different frequency bands-delta, theta, alpha, beta, and gamma. The features that (1) were able to discriminate between the neutral baseline and the emotional playing and (2) were shared across conditions, were used for further comparison. The low frequency bands-delta, theta, alpha-showed a limited number of connections (4 to 6) contributing to the discrimination between the emotional playing conditions. In contrast, a dense pattern of connections between regions that was able to discriminate between conditions (30 to 38) was observed in beta and gamma frequency ranges. The current study demonstrates that EEG-based connectivity in beta and gamma frequency ranges can effectively reflect the state of the networks involved in the emotional transfer through musical performance, whereas utility of the low frequency bands (delta, theta, alpha) remains questionable.


Assuntos
Música , Encéfalo/fisiologia , Mapeamento Encefálico , Eletroencefalografia , Emoções/fisiologia , Humanos , Música/psicologia
3.
Cogn Neurodyn ; 13(6): 555-566, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31741692

RESUMO

Classifying different object categories is one of the most important aims of brain-computer interface researches. Recently, interactions between brain regions were studied using different methods, such as functional and effective connectivity techniques. Functional and effective connectivity techniques are applied to estimate human brain areas connectivity. The main purpose of this study is to compare classification accuracy of the most advanced functional and effective methods in order to classify 12 basic object categories using Electroencephalography (EEG) signals. In this paper, 19 channels EEG signals were collected from 10 healthy subjects; when they were visiting color images and instructed to select the target images among others. Correlation, magnitude square coherence, wavelet coherence (WC), phase synchronization and mutual information were applied to estimate functional cortical connectivity. On the other hand, directed transfer function, partial directed coherence, generalized partial directed coherence (GPDC) were used to obtain effective cortical connectivity. After feature extraction, the scalar feature selection methods including T-test and one-sided-anova were applied to rank and select the most informative features. The selected features were classified by a one-against-one support vector machine classifier. The results indicated that the use of different techniques led to different classifying accuracy and brain lobes analysis. WC and GPDC are the most accurate methods with performances of 80.15% and 64.43%, respectively.

4.
Int J Psychophysiol ; 122: 17-23, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28532643

RESUMO

The purpose of this study is to extend a feature set with non-linear features to improve classification rate of guilty and innocent subjects. Non-linear features can provide extra information about phase space. The Event-Related Potential (ERP) signals were recorded from 49 subjects who participated in concealed face recognition test. For feature extraction, at first, several morphological characteristics, frequency bands, and wavelet coefficients (we call them basic-features) are extracted from each single-trial ERP. Recurrence Quantification Analysis (RQA) measures are then computed as non-linear features from each single-trial. We apply Genetic Algorithm (GA) to select the best feature set and this feature set is used for classification of data using Linear Discriminant Analysis (LDA) classifier. Next, we use a new approach to improve classification results based on introducing an adaptive-threshold. Results indicate that our method is able to correctly detect 91.83% of subjects (45 correct detection of 49 subjects) using combination of basic and non-linear features, that is higher than 87.75% for basic and 79.59% for non-linear features. This shows that combination of non-linear and basic- features could improve classification rate.


Assuntos
Encéfalo/fisiologia , Eletroencefalografia , Potenciais Evocados/fisiologia , Reconhecimento Facial/fisiologia , Detecção de Mentiras , Adolescente , Adulto , Algoritmos , Análise Discriminante , Eletroculografia , Feminino , Humanos , Masculino , Dinâmica não Linear , Análise de Ondaletas , Adulto Jovem
5.
Int J Psychophysiol ; 116: 1-8, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28192170

RESUMO

The purpose of this study is to extend a feature set with non-linear features to improve classification rate of guilty and innocent subjects. Non-linear features can provide extra information about phase space. The Event-Related Potential (ERP) signals were recorded from 49 subjects who participated in concealed face recognition test. For feature extraction, at first, several morphological characteristics, frequency bands, and wavelet coefficients (we call them basic-features) are extracted from each single-trial ERP. Recurrence Quantification Analysis (RQA) measures are then computed as non-linear features from each single-trial. We apply Genetic Algorithm (GA) to select the best feature set and this feature set is used for classification of data using Linear Discriminant Analysis (LDA) classifier. Next, we use a new approach to improve classification results based on introducing an adaptive-threshold. Results indicate that our method is able to correctly detect 91.83% of subjects (45 correct detection of 49 subjects) using combination of basic and non-linear features, that is higher than 87.75% for basic and 79.59% for non-linear features. This shows that combination of non-linear and basic- features could improve classification rate.


Assuntos
Córtex Cerebral/fisiologia , Eletroencefalografia/métodos , Potenciais Evocados/fisiologia , Reconhecimento Facial/fisiologia , Reconhecimento Automatizado de Padrão/métodos , Adolescente , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
6.
Front Hum Neurosci ; 10: 630, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28018197

RESUMO

Humans are fast and accurate in categorizing complex natural images. It is, however, unclear what features of visual information are exploited by brain to perceive the images with such speed and accuracy. It has been shown that low-level contrast statistics of natural scenes can explain the variance of amplitude of event-related potentials (ERP) in response to rapidly presented images. In this study, we investigated the effect of these statistics on frequency content of ERPs. We recorded ERPs from human subjects, while they viewed natural images each presented for 70 ms. Our results showed that Weibull contrast statistics, as a biologically plausible model, explained the variance of ERPs the best, compared to other image statistics that we assessed. Our time-frequency analysis revealed a significant correlation between these statistics and ERPs' power within theta frequency band (~3-7 Hz). This is interesting, as theta band is believed to be involved in context updating and semantic encoding. This correlation became significant at ~110 ms after stimulus onset, and peaked at 138 ms. Our results show that not only the amplitude but also the frequency of neural responses can be modulated with low-level contrast statistics of natural images and highlights their potential role in scene perception.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...