Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Sci ; 172: 106151, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35217210

RESUMO

In early development, when active pharmaceutical ingredient (API) is in short supply, it would be beneficial to reduce the number of experiments by predicting a suitable L/S ratio before starting the product development. The aim of the study was to decrease development time and the amount of API needed for the process development of high drug load formulations for continuous twin-screw wet granulation (TSWG). Mixer torque rheometry was used as a pre-formulation tool to predict the suitable L/S ratios for granulation experiments. Three different values that were based on the MTR curves, were determined and assessed for their ability to predict the suitable L/S ratio for TSWG. Three APIs (allopurinol, paracetamol and metformin HCl) were used as model substances in high drug load formulations containing 60% drug substance. The MCC-mannitol ratio was varied to assess the optimal composition for the high-dose formulations. The API solubility affected the mixer torque rheometer (MTR) curves and the optimum L/S ratio for TSWG. The highly soluble metformin needed a much lower L/S ratio compared with allopurinol and paracetamol. A design space was determined for each API based on granule flowability and tablet tensile strength. The flowability of the granules and tensile strength of the tablets improved with an increasing L/S ratio. The MCC-mannitol filler ratio had a significant effect on tabletability for paracetamol and metformin, and these APIs having poor compaction properties needed higher MCC ratios to achieve the 2 MPa limit. The MCC-mannitol ratio had no effect on the granule flow properties. Instead, API properties had the largest influence on both granule flow properties and tensile strength. Based on this study, both the L/S ratio and MCC-mannitol ratio are crucial in controlling the critical quality attributes in high drug load formulations processed by TSWG. The optimum flow and tablet mechanical properties were achieved when using 75:25 MCC-mannitol ratio. Both start of the slope and 2/3 of the L/S ratio at the maximum torque in MTR provided a solid guideline to aim for in a TSWG experiment.


Assuntos
Excipientes , Tecnologia Farmacêutica , Composição de Medicamentos , Humanos , Tamanho da Partícula , Solubilidade , Comprimidos , Resistência à Tração
2.
Int J Pharm ; 590: 119890, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-32946976

RESUMO

Granule structure has a key influence on tablet critical quality attributes. The ability to control this structure through excipient choice is an important part of formulation development. Mannitol is a popular diluent and the choice of input grade has been shown to impact granule properties. Allopurinol formulations containing two grades of mannitol (Pearlitol 160C and 200SD) were prepared by wet-granulation (twin-screw and high-shear) at different liquid/solid ratios (0.3 and 0.6 g/g). The particle and bulk properties were characterised by a range of techniques and linked to flow performance and tablet tensile strength during compression on a rotary tablet press. During granulation, 200SD underwent a polymorphic transition from a mixture of α and ß to predominantly ß. This transition was accompanied by a morphology change. Mannitol needles were formed, giving more porous granules with a higher specific surface area, which led to poorer flow properties but higher tablet tensile strength. This study concludes that understanding the effect of mannitol grade is a crucial part of formulation selection.


Assuntos
Excipientes , Manitol , Composição de Medicamentos , Tamanho da Partícula , Comprimidos , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...