Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell J ; 25(1): 1-10, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36680478

RESUMO

OObjective: Long non-coding RNA (lncRNA) H19 has essential roles in growth, migration, invasion, and metastasis of most cancers. H19 dysregulation is present in a large number of solid tumors and leukemia. However, the expression level of H19 in acute lymphoblastic leukemia (ALL) has not been elucidated yet. The current study aimed to explore H19 expression in ALL patients and cell lines. MATERIALS AND METHODS: This experimental study was conducted in bone marrow (BM) samples collected from 25 patients with newly diagnosed ALL. In addition, we cultured the RPMI-8402, Jurkat, Ramos, and Daudi cell lines and assessed the effects of internal (hypoxia) and external (chemotherapy medications L-asparaginase [ASP] and vincristine [VCR]) factors on h19 expression. The expressions of H19, P53, c-Myc, HIF-1α and ß-actin were performed using quantitative real-time polymerase chain reaction (qRT-PCR) method. RESULTS: There was significantly increased H19 expression in the B-cell ALL (B-ALL, P<0.05), T-cell ALL (T-ALL, P<0.01) patients and the cell lines. This upregulation was governed by the P53, HIF-1α, and c-Myc transcription factors. We observed that increased c-Myc expression induced H19 expression; however, P53 adversely affected H19 expression. In addition, the results indicated that chemotherapy changed the gene expression pattern. There was a considerable decrease in H19 expression after exposure to chemotherapy medications; nonetheless, hypoxia induced H19 expression through P53 downregulation. CONCLUSION: Our findings suggest that H19 may have an important role in pathogenesis in ALL and may act as a promising and potential therapeutic target.

2.
Environ Sci Pollut Res Int ; 29(26): 39903-39913, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35112247

RESUMO

Endocrine-disrupting chemicals (EDCs), a class of peripheral toxic substances, can cause many environmental and clinical side effects, particularly on the human body's endocrine system. Bisphenol A (BPA) and diethylhexyl phthalate (DEHP) are two well-known EDCs in the medicine industry. However, there are no comprehensive studies on their effects on hematopoiesis. Hence, this study aimed to investigate the effect of these two aforementioned substances on the clonogenic capacity of umbilical cord blood hematopoietic stem cells (CB-HSCs). The HSCs which express CD34 + were isolated from umbilical cord blood by the magnetic-activated cell sorting (MACS) system. To investigate the effects of different optimized concentrations of BPA and DEHP, CB-CD34+ HSCs were exposed to EDCs in semisolid medium. For evaluation of coexposures, CB-CD34+ HSCs were cocultured with bone marrow-derived mesenchymal stem cells (BM-MSCs) in the presence of BPA and DEHP. Finally, the number and types of colonies were evaluated after 14 days. Statistical analysis was performed by GraphPad Prism through ANOVA. CB-HSC treated by BPA and DEHP showed a lower absolute colony count than the control group (P < 0.05). Decrease in clonogenic potential of HSCs was more significant in coculture condition by MSCs. In particular, there was a significant decrease in the BFU-E colonies in comedicated-derived fractions (P < 0.0001). In the presence of EDCs such as BPA and DEHP, the patterns of differentiation in CD34+ CB-HSCs changed from suppressed erythroid differentiation toward stimulated myelogenesis pathways.


Assuntos
Dietilexilftalato , Disruptores Endócrinos , Células-Tronco Mesenquimais , Antígenos CD34/metabolismo , Antígenos CD34/farmacologia , Medula Óssea/metabolismo , Dietilexilftalato/metabolismo , Dietilexilftalato/toxicidade , Disruptores Endócrinos/metabolismo , Sangue Fetal , Células-Tronco Hematopoéticas/metabolismo , Humanos
3.
BMC Cancer ; 21(1): 1002, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493241

RESUMO

BACKGROUND: Leukemic cells facilitate the creation of the tumor-favorable microenvironment in the bone marrow niche using their secreted factors. There are not comprehensive details about immunosuppressive properties of chronic myelogenous leukemia-derived exosomes in the bone marrow stromal and immune compartment. We explained here that K562-derived exosomes could affect the gene expression, cytokine secretion, nitric oxide (NO) production, and redox potential of human primary cord blood-derived T cells (CB T cells). METHODS: Human primary cord blood-derived T cells were treated with K562-derived exosomes. We evaluated the expression variation of some critical genes activated in suppressor T cells. The alterations of some inflammatory and anti-inflammatory cytokines levels were assessed using ELISA assay and real-time PCR. Finally, NO production and intracellular ROS level in CB T cells were evaluated using Greiss assay and flow cytometry, respectively. RESULTS: Our results showed the over-expression of the genes involved in inhibitory T cells, including NQO1, PD1, and FoxP3. In contrast, genes involved in T cell activation such as CD3d and NFATc3 have been reduced significantly. Also, the expression of interleukin 10 (IL-10) and interleukin 6 (IL-6) mRNAs were significantly up-regulated in these cells upon exosome treatment. In addition, secretion of the interleukin 10, interleukin 6, and interleukin 17 (IL-17) proteins increased in T cells exposed to K562-derived exosomes. Finally, K562-derived exosomes induce significant changes in the NO production and intracellular ROS levels in CB T cells. CONCLUSIONS: These results demonstrate that K562-derived exosomes stimulate the immunosuppressive properties in CB-derived T cells by inducing anti-inflammatory cytokines such as IL-10, reducting ROS levels, and arising of NO synthesis in these cells. Moreover, considering the elevation of FOXP3, IL-6, and IL-17 levels in these cells, exosomes secreted by CML cells may induce the fates of T cells toward tumor favorable T cells instead of conventional activated T cells.


Assuntos
Citocinas/metabolismo , Exossomos/imunologia , Sangue Fetal/imunologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Microambiente Tumoral/imunologia , Proliferação de Células , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/imunologia
4.
Mol Biol Rep ; 47(5): 3909-3918, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32406020

RESUMO

Patients with ß-thalassemia suffer from a lack or absence of the beta-globin chain of normal hemoglobin (Hb). Therefore, an increase in fetal Hb (HbF) levels could improve the clinical status of these patients. Downregulation of BCL11A, a key regulatory transcription factor, could ameliorate the clinical status of thalassemic patients by increasing HbF levels. miR-30a expression and its relationship with the BCL11A gene in erythroid precursors was explored in patients with ß-thalassemia. The relevance of miR-30a to clinical parameters was also investigated. We evaluated the expressions of miR-30a, BCL11A, and γ-globin genes by quantitative real-time PCR (qRT-PCR) on isolated erythroid precursors from peripheral blood samples of ß-thalassemia intermedia (TI) patients and in bone marrow samples from healthy individuals as controls. The correlation between miR-30a expression and clinical indices that included HbF levels, ferritin, and the frequency of blood transfusions were assessed. We observed increased expression of miR-30a in conjunction with decreased BCL11A expression and elevated γ-globin and HbF levels. Patients with elevated miR-30a expression had a higher percentage of HbF and a lower level of ferritin. In addition, we observed that overexpression of miR-30a in erythroid precursor cells led to reduced BCL11A expression and was associated with elevated γ-globin expression. Our findings showed the importance of miR-30a in BCL11A and HbF regulation, and in the clinical status of patients with ß-thalassemia.


Assuntos
MicroRNAs/genética , Proteínas Repressoras/metabolismo , Talassemia beta/genética , Adulto , Células Precursoras Eritroides/metabolismo , Células Precursoras Eritroides/fisiologia , Feminino , Hemoglobina Fetal/genética , Regulação da Expressão Gênica , Humanos , Masculino , MicroRNAs/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Globinas beta/genética , Talassemia beta/metabolismo , gama-Globinas/genética , gama-Globinas/metabolismo
5.
Life Sci ; 256: 117840, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32450173

RESUMO

AIMS: Platelet production improvement can resolve concerns about the limitations of external platelet supply and platelet transfusion in thrombocytopenia patients. To this end, scientists encourage to induce the generation of megakaryocyte and platelet. Curcumin is a safe ingredient of turmeric that affects various cellular pathways. The effect of this component on platelet production has not been yet reported. MAIN METHODS: Our in vitro experiments include the investigation of the effects of nanocurcumin on megakaryocytes production from K562 cells and hematopoietic stem cells via megakaryocyte markers expression, DNA content, ROS, and morphologic analysis, and CFC assay. The regulatory functions of MAPKs pathways were also determined. In the in vivo study tissue distribution of nanocurcumin was determined and two treatment schedules were used to evaluate the capability of nanocurcumin to prevent the occurrence of Busulfan-induced thrombocytopenia in the mouse model. KEY FINDING: In vitro evidences demonstrated that nanocurcumin can induce MK production from K562 cells and hematopoietic stem cells. Inhibition of ERK1/2 and JNK pathways arrested this activity. In vivo experiments showed the uptake of nanocurcumin by tissues in mice. Administration of nanocurcumin could preserve bone marrow integrity and increase of the number of circulating platelets in the Busulfan-treated mice models. SIGNIFICANCE: Our results have demonstrated that nanocurcumin administration can be useful for the improvement of megakaryocytes and platelet generation in vitro. This component may be exerting these beneficial effects on megakaryopoiesis by modulating ERK1/2 and JNK pathways. As well as nanocurcumin has the potential to prevent thrombocytopenia in chemotherapy threated mice.


Assuntos
Plaquetas/efeitos dos fármacos , Curcumina/farmacologia , Megacariócitos/efeitos dos fármacos , Nanoestruturas , Trombocitopenia/prevenção & controle , Animais , Antineoplásicos Alquilantes/toxicidade , Plaquetas/metabolismo , Bussulfano/toxicidade , Curcumina/administração & dosagem , Curcumina/farmacocinética , Feminino , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Humanos , Células K562 , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Megacariócitos/citologia , Camundongos , Camundongos Endogâmicos BALB C , Trombocitopenia/induzido quimicamente , Distribuição Tecidual
6.
Int J Mol Cell Med ; 8(1): 14-23, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32195202

RESUMO

In vitro derivation of germ cells from different stem cell sources has been challenging in the treatment of male infertility. MicroRNAs (miRNAs) have an essential role in gene expression at post-transcriptional level. The aim of this research was to find more about miRNA-17 and miRNA-146 expression during differentiation of spermatogonial stem cell like cells (SSC like cells) from mouse bone marrow mesenchymal stem cells (BMSCs) through bone morphogenic protein 4 (BMP4) and retinoic acid (RA) induction. BMSCs were treated with BMP4 to produce primordial germ cell like cells (PGC like cells). The cells were differentiated into SSC like cells by an inducer cocktail including RA, leukemia inhibitory factor (LIF) and basic fibroblast growth factor (bFGF). The PGC like cells and SSC like cells were evaluated for pluripotency (Nanog, Oct-4) and germ cell specific gene (Piwil2, Plzf, Dazl, and Stra8) expression, protein expression (Plzf, Stra8), and miRNA-17 and miRNA-146 mRNA expression. Our results showed that BMP4 leads to Dazl upregulation and Nanog downregulation expression in PGC like cells. RA upregulated Stra8 and Piwil2, and downregulated Nanog and Oct-4. MiRNA-17 and miRNA-146 expression decreased significantly in SSC like cells after RA treatment. This research indicated the aberrant miRNA-17 and miRNA-146 expression in SSC like cells in comparison with SSCs. Downregulation of the two miRNAs using RA in the stimulated undifferentiated state could probably be one of the key factors of SSC like cell arrest.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...