Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37111002

RESUMO

Despite the fast-developing momentum of perovskite solar cells (PSCs) toward flexible roll-to-roll solar energy harvesting panels, their long-term stability remains to be the challenging obstacle in terms of moisture, light sensitivity, and thermal stress. Compositional engineering including less usage of volatile methylammonium bromide (MABr) and incorporating more formamidinium iodide (FAI) promises more phase stability. In this work, an embedded carbon cloth in carbon paste is utilized as the back contact in PSCs (having optimized perovskite composition), resulting in a high power conversion efficiency (PCE) of 15.4%, and the as-fabricated devices retain 60% of the initial PCE after more than 180 h (at the experiment temperature of 85 °C and under 40% relative humidity). These results are from devices without any encapsulation or light soaking pre-treatments, whereas Au-based PSCs retain 45% of the initial PCE at the same conditions with rapid degradation. In addition, the long-term device stability results reveal that poly[bis(4-phenyl) (2,4,6-trimethylphenyl) amine] (PTAA) is a more stable polymeric hole-transport material (HTM) at the 85 °C thermal stress than the copper thiocyanate (CuSCN) inorganic HTM for carbon-based devices. These results pave the way toward modifying additive-free and polymeric HTM for scalable carbon-based PSCs.

2.
ACS Appl Mater Interfaces ; 13(38): 45455-45464, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34528780

RESUMO

A key direction toward managing extrinsic instabilities in perovskite solar cells (PSCs) is encapsulation. Thus, a suitable sealing layer is required for an efficient device encapsulation, preventing moisture and oxygen ingression into the perovskite layer. In this work, a solution-based, low-cost, and commercially available bilayer structure of poly(methyl methacrylate)/styrene-butadiene (PMMA/SB) is investigated for PSCs encapsulation. Encapsulated devices retained 80% of the initial power conversion efficiency (PCE) at 85 °C temperature and 85% relative humidity after 100 h, while reference devices without SB (only PMMA) suffer from rapid and intense degradation after only 2 h, under the same condition. In addition, encapsulated devices retained 95% of the initial PCE under -15 °C freezing temperature after 6 h and retained ∼80% of the initial PCE after immersion in HCl (37%) for 90 min. Moreover, applying an additional aluminum metal sheet on the PMMA/SB protective bilayer leads to the improvement of device stability up to 500 h under outdoor illumination, retaining almost 90% of the initial PCE. Considering the urge to develop reliable, scalable, and simple encapsulation for future large-area PSCs, this work establishes solution-based bilayer encapsulation, which is applicable for flexible solar modules as well as other optoelectronic devices such as light-emitting devices and photodetectors.improvement of device stability up to 500 h under outdoor illumination, retaining almost 90% of the initial PCE. Considering the urge to develop reliable, scalable, and simple encapsulation for future large-area PSCs, this work establishes solution-based bilayer encapsulation, which is applicable for flexible solar modules as well as other optoelectronic devices such as light-emitting devices and photodetectors.

3.
Adv Mater ; 33(33): e2007285, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34117806

RESUMO

The cost-effective, robust, and efficient electrocatalysts for photoelectrochemical (PEC) water-splitting has been extensively studied over the past decade to address a solution for the energy crisis. The interesting physicochemical properties of CuO have introduced this promising photocathodic material among the few photocatalysts with a narrow bandgap. This photocatalyst has a high activity for the PEC hydrogen evolution reaction (HER) under simulated sunlight irradiation. Here, the recent advancements of CuO-based photoelectrodes, including undoped CuO, doped CuO, and CuO composites, in the PEC water-splitting field, are comprehensively studied. Moreover, the synthesis methods, characterization, and fundamental factors of each classification are discussed in detail. Apart from the exclusive characteristics of CuO-based photoelectrodes, the PEC properties of CuO/2D materials, as groups of the growing nanocomposites in photocurrent-generating devices, are discussed in separate sections. Regarding the particular attention paid to the CuO heterostructure photocathodes, the PEC water splitting application is reviewed and the properties of each group such as electronic structures, defects, bandgap, and hierarchical structures are critically assessed.

4.
Adv Sci (Weinh) ; 7(13): 1902448, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32670742

RESUMO

Perovskite solar cells (PSCs) have emerged recently as promising candidates for next generation photovoltaics and have reached power conversion efficiencies of 25.2%. Among the various methods to advance solar cell technologies, the implementation of nanoparticles with plasmonic effects is an alternative way for photon and charge carrier management. Surface plasmons at the interfaces or surfaces of sophisticated metal nanostructures are able to interact with electromagnetic radiation. The properties of surface plasmons can be tuned specifically by controlling the shape, size, and dielectric environment of the metal nanostructures. Thus, incorporating metallic nanostructures in solar cells is reported as a possible strategy to explore the enhancement of energy conversion efficiency mainly in semi-transparent solar cells. One particularly interesting option is PSCs with plasmonic structures enable thinner photovoltaic absorber layers without compromising their thickness while maintaining a high light harvest. In this Review, the effects of plasmonic nanostructures in electron transport material, perovskite absorbers, the hole transport material, as well as enhancement of effective refractive index of the medium and the resulting solar cell performance are presented. Aside from providing general considerations and a review of plasmonic nanostructures, the current efforts to introduce these plasmonic structures into semi-transparent solar cells are outlined.

5.
Small ; 14(46): e1802385, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30106507

RESUMO

The discovery and development of organic-inorganic halide perovskites with exceptional properties has become an active research area in the field of photovoltaics. Perovskite solar cells (PSCs) have attracted much attention in recent years due to various attractive advantages, such as simple solution processing, low manufacturing cost, and high performances with power conversion efficiencies now reaching certified values close to 23% within a very short time frame of five years. Despite this rapid progress, the inferior device stability remains a great challenge. This review focuses on the factors limiting the stability of PSCs, such as humidity, heat, and irradiation, summarizing recent strategies to overcome stability and fabrication obstacles in order to open new perspectives to achieve highly durable perovskite devices toward future industrialization.

6.
ACS Omega ; 3(5): 5038-5043, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458717

RESUMO

Identifying and reducing the dominant recombination processes in perovskite solar cells is one of the major challenges for further device optimization. Here, we show that introducing a thin interlayer of poly(4-vinylpyridine) (PVP) between the perovskite film and the hole transport layer reduces nonradiative recombination. Employing such a PVP interlayer, we reach an open-circuit voltage of 1.20 V for the best devices and a stabilized efficiency of 20.7%. The beneficial effect of the PVP interlayer is proven by statistical analysis of various samples, many of those showing an open-circuit voltage larger than 1.17 V, and a 30 mV increase in average compared to unmodified samples. The reduced nonradiative recombination is proven by enhanced photo- and electroluminescence yields.

7.
Adv Mater ; 29(38)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28833614

RESUMO

Perovskite solar cells (PSCs) use perovskites with an APbX3 structure, where A is a monovalent cation and X is a halide such as Cl, Br, and/or I. Currently, the cations for high-efficiency PSCs are Rb, Cs, methylammonium (MA), and/or formamidinium (FA). Molecules larger than FA, such as ethylammonium (EA), guanidinium (GA), and imidazolium (IA), are usually incompatible with photoactive "black"-phase perovskites. Here, novel molecular descriptors for larger molecular cations are introduced using a "globularity factor", i.e., the discrepancy of the molecular shape and an ideal sphere. These cationic radii differ significantly from previous reports, showing that especially ethylammonium (EA) is only slightly larger than FA. This makes EA a suitable candidate for multication 3D perovskites that have potential for unexpected and beneficial properties (suppressing halide segregation, stability). This approach is tested experimentally showing that surprisingly large quantities of EA get incorporated, in contrast to most previous reports where only small quantities of larger molecular cations can be tolerated as "additives". MA/EA perovskites are characterized experimentally with a band gap ranging from 1.59 to 2.78 eV, demonstrating some of the most blue-shifted PSCs reported to date. Furthermore, one of the compositions, MA0.5 EA0.5 PbBr3 , shows an open circuit voltage of 1.58 V, which is the highest to date with a conventional PSC architecture.

8.
Adv Mater ; 28(39): 8681-8686, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27515231

RESUMO

Controlling the morphology and surface passivation in perovskite solar cells is paramount in obtaining optimal optoelectronic properties. This study incorporates N-doped graphene nanosheets in the perovskite layer, which simultaneously induces an improved morphology and surface passivation at the perovskite/spiro interface, resulting in enhancement in all photovoltaic parameters.

9.
Chemphyschem ; 17(15): 2382-8, 2016 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-27124622

RESUMO

There have been recent reports on the formation of single-halide perovskites, CH3 NH3 PbX3 (X=Cl, Br, I), by means of vapor-assisted solution processing. Herein, the successful formation of mixed-halide perovskites (CH3 NH3 PbI3-x Xx ) by means of a vapor-assisted solution method at ambient atmosphere is reported. The perovskite films are synthesized by exposing PbI2 film to CH3 NH3 X (X=I, Br, or Cl) vapor. The prepared perovskite films have uniform surfaces with good coverage, as confirmed by SEM images. The inclusion of chlorine and bromine into the structure leads to a lower temperature and shorter reaction time for optimum perovskite film formation. In the case of CH3 NH3 PbI3-x Clx , the optimum reaction temperature is reduced to 100 °C, and the resulting phases are CH3 NH3 PbI3 (with trace Cl) and CH3 NH3 PbCl3 with a ratio of about 2:1. In the case of CH3 NH3 PbI3-x Brx , single-phase CH3 NH3 PbI2 Br is formed in a considerably shorter reaction time than that of CH3 NH3 PbI3 . The mesostructured perovskite solar cells based on CH3 NH3 PbI3 films show the best optimal power conversion efficiency of 13.5 %, whereas for CH3 NH3 PbI3-x Clx and CH3 NH3 PbI3-x Brx the best recorded efficiencies are 11.6 and 10.5 %, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...