Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Sci Technol ; 86(10): 2593-2610, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36450675

RESUMO

The present study set out to investigate clindamycin (CLN) removal from aqueous solution using non-thermal plasma (NTP) under atmospheric air conditions and to address the effects of some variables including pH, initial concentration of CLN, and working voltage on CLN degradation. The result showed that the NTP system exhibited excellent degradation rate and mineralization efficiency on CLN in 15 min under neutral conditions, which exceeded 90 and 45%, respectively, demonstrating its conversion to other organic by-products. Furthermore, CLN degradation was largely dependent upon the initial pH of solution, applied voltage, and reaction time. Specifically, under acidic conditions (pH = 3), working voltage of 24 kV and after 15 min of reaction, almost 100% of CLN was degraded. NTP-initiated CLN degradation products through LC-MS/MS analysis, determined within 10 min of reaction, inferred that the complex structure of CLN has undergone deterioration by active radical species which subsequently generated small molecular organic compounds. Chemical processes involved in CLN degradation were found to be demethylation, desulfonylation, dechlorination, hydroxylation and deamination. Lastly, antimicrobial susceptibility tests revealed that the activity of CLN was reduced following NTP treatment, which is also in good agreement with the minimum inhibitory concentration (MIC) values obtained from microdilution analyses.


Assuntos
Anti-Infecciosos , Gases em Plasma , Clindamicina/farmacologia , Cromatografia Líquida , Espectrometria de Massas em Tandem
2.
Environ Sci Pollut Res Int ; 27(14): 16100-16109, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32103430

RESUMO

The non-thermal plasma (NTP) is a superior proposed method for nitric oxide removal because of operation at atmospheric pressure and ambient temperature. The energy consumption is the main challenge of using this technology. The packed plasma reactor with dielectric materials has been extensively investigated; it has higher energy efficiency. In this study, the energy efficiency and the other effectiveness factors in nitric oxide removal by NTP reactor packed with ceramic and glass beads optimized and modeled using Response Surface Methodology. The findings showed the maximum energy efficiency was 132.69g/J in the optimal conditions of initial concentration, gas flowrate, and duty cycle(voltage) equal to 1050 ppm, 2.5 L/min, and 9%(22KV), respectively in the packed reactor with ceramic beads by 1.7 times than the empty reactor. It is concluded that the use of ceramic beads as a dielectric material in the discharge space significantly increased energy efficiency in the removal of nitric oxide.


Assuntos
Óxido Nítrico , Gases em Plasma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...