Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Membranes (Basel) ; 13(10)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37887989

RESUMO

The adoption of Proton Exchange Membrane (PEM) fuel cells (FCs) is of great significance in diverse industries, as they provide high efficiency and environmental advantages, enabling the transition to sustainable and clean energy solutions. This study aims to enhance the output power of PEM-FCs by employing the Adaptive Neuro-Fuzzy Inference System (ANFIS) and modern optimization algorithms. Initially, an ANFIS model is developed based on empirical data to simulate the output power density of the PEM-FC, considering factors such as pressure, relative humidity, and membrane compression. The Salp swarm algorithm (SSA) is subsequently utilized to determine the optimal values of the input control parameters. The three input control parameters of the PEM-FC are treated as decision variables during the optimization process, with the objective to maximize the output power density. During the modeling phase, the training and testing data exhibit root mean square error (RMSE) values of 0.0003 and 24.5, respectively. The coefficient of determination values for training and testing are 1.0 and 0.9598, respectively, indicating the successfulness of the modeling process. The reliability of SSA is further validated by comparing its outcomes with those obtained from particle swarm optimization (PSO), evolutionary optimization (EO), and grey wolf optimizer (GWO). Among these methods, SSA achieves the highest average power density of 716.63 mW/cm2, followed by GWO at 709.95 mW/cm2. The lowest average power density of 695.27 mW/cm2 is obtained using PSO.

2.
Sci Rep ; 13(1): 16779, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798359

RESUMO

Every year manufacturers of household appliances improve their devices, trying to make everyday life easier for users. New smart devices have many useful features, but not all users can easily cope with the complexity of the devices. One of the main tasks of household appliance manufacturers is to ensure the convenience of using appliances, taking into account the increasing complexity. Therefore, any manufacturer supplies equipment with a short but useful instruction manual. Practice shows that no printed user manual can compare with a demonstration of the device operation by a professional consultant. Instructions for home appliances using augmented reality technology will allow users to get the necessary detailed information about the device in a short period of time. As part of this work, the task of developing an artificial intelligence-based module is being solved. This module consists of developed classification, matching, and tracking submodules that can provide simple and fast visual instructions to users of household appliances in real time. The identification of household appliances is performed with more than 0.9 accuracy, and the tracking inside an unidentified object using the camera of a mobile device is processed with the success score of about 0.68 and frames per second (FPS) about 7. Mobile applications based on the proposed intelligent modules for Android and iOS were developed.

3.
Sensors (Basel) ; 23(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37430683

RESUMO

A significant majority of the population in India makes their living through agriculture. Different illnesses that develop due to changing weather patterns and are caused by pathogenic organisms impact the yields of diverse plant species. The present article analyzed some of the existing techniques in terms of data sources, pre-processing techniques, feature extraction techniques, data augmentation techniques, models utilized for detecting and classifying diseases that affect the plant, how the quality of images was enhanced, how overfitting of the model was reduced, and accuracy. The research papers for this study were selected using various keywords from peer-reviewed publications from various databases published between 2010 and 2022. A total of 182 papers were identified and reviewed for their direct relevance to plant disease detection and classification, of which 75 papers were selected for this review after exclusion based on the title, abstract, conclusion, and full text. Researchers will find this work to be a useful resource in recognizing the potential of various existing techniques through data-driven approaches while identifying plant diseases by enhancing system performance and accuracy.


Assuntos
Agricultura , Doenças das Plantas , Humanos , Bases de Dados Factuais , Índia , Pesquisadores
4.
Sensors (Basel) ; 23(13)2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37447952

RESUMO

Programmable Object Interfaces are increasingly intriguing researchers because of their broader applications, especially in the medical field. In a Wireless Body Area Network (WBAN), for example, patients' health can be monitored using clinical nano sensors. Exchanging such sensitive data requires a high level of security and protection against attacks. To that end, the literature is rich with security schemes that include the advanced encryption standard, secure hashing algorithm, and digital signatures that aim to secure the data exchange. However, such schemes elevate the time complexity, rendering the data transmission slower. Cognitive radio technology with a medical body area network system involves communication links between WBAN gateways, server and nano sensors, which renders the entire system vulnerable to security attacks. In this paper, a novel DNA-based encryption technique is proposed to secure medical data sharing between sensing devices and central repositories. It has less computational time throughout authentication, encryption, and decryption. Our analysis of experimental attack scenarios shows that our technique is better than its counterparts.


Assuntos
Segurança Computacional , Telemedicina , Humanos , Redes de Comunicação de Computadores , Telemedicina/métodos , Tecnologia sem Fio , Tecnologia , Cognição
5.
Sensors (Basel) ; 23(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37447981

RESUMO

With the increasing growth rate of smart home devices and their interconnectivity via the Internet of Things (IoT), security threats to the communication network have become a concern. This paper proposes a learning engine for a smart home communication network that utilizes blockchain-based secure communication and a cloud-based data evaluation layer to segregate and rank data on the basis of three broad categories of Transactions (T), namely Smart T, Mod T, and Avoid T. The learning engine utilizes a neural network for the training and classification of the categories that helps the blockchain layer with improvisation in the decision-making process. The contributions of this paper include the application of a secure blockchain layer for user authentication and the generation of a ledger for the communication network; the utilization of the cloud-based data evaluation layer; the enhancement of an SI-based algorithm for training; and the utilization of a neural engine for the precise training and classification of categories. The proposed algorithm outperformed the Fused Real-Time Sequential Deep Extreme Learning Machine (RTS-DELM) system, the data fusion technique, and artificial intelligence Internet of Things technology in providing electronic information engineering and analyzing optimization schemes in terms of the computation complexity, false authentication rate, and qualitative parameters with a lower average computation complexity; in addition, it ensures a secure, efficient smart home communication network to enhance the lifestyle of human beings.


Assuntos
Inteligência Artificial , Blockchain , Humanos , Aprendizado de Máquina , Aprendizagem , Algoritmos
6.
Environ Res ; 234: 116414, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37390953

RESUMO

Breast cancer is the leading reason of death among women aged 35 to 54. Breast cancer diagnosis still presents significant challenges, and preventing the disease's most severe symptoms requires early detection. The role of nanotechnology in the tumor-treatment has recently attracted a lot of interest. In cancer therapies, nanotechnology plays a major role in the medication distribution process. Nanoparticles have the ability to target tumors. Nanoparticles are favorable and maybe preferable for usage in tumor detection and imaging due to their incredibly small size. Quantum dots, semiconductor crystals with increased labeling and imaging capabilities for cancer cells, are one of the particles that have received the most research attention. The design of the research is cross-sectional and descriptive. From April through September of 2020, data were gathered at the State Hospital. All pregnant women who came to the hospital throughout the first and second trimesters of the research's data collection were included in the study population. 100 pregnant women between the ages of 20 and 40 who had not yet had a mammogram comprised the research sample. 1100 digitized mammography images are included in the dataset, which was obtained from a hospital. Convolutional neural networks (CNN) were used to scan all images, and breast masses and mass comparisons were made using the malignant-benign categorization. The adaptive neuro-fuzzy inference system (ANFIS) then examined all of the data obtained by CNN in order to identify breast cancer early using inputs based on the nine different inputs. The precision of the mechanism used in this technique to determine the ideal radius value is significantly impacted by the radius value. Nine variables that define breast cancer indicators were utilized as inputs to the ANFIS classifier, which was then used to identify breast cancer. The parameters were given the necessary fuzzy functions, and the combined dataset was applied to train the method. Testing was initially performed by 30% of dataset that was later done with the real data obtained from the hospital. The accuracy of the results for 30% data was 84% (specificity =72.7%, sensitivity =86.7%) and the results for the real data was 89.8% (sensitivity =82.3%, specificity =75.9%), respectively.


Assuntos
Neoplasias da Mama , Ginecologia , Obstetrícia , Gravidez , Humanos , Feminino , Adulto Jovem , Adulto , Neoplasias da Mama/diagnóstico por imagem , Estudos Transversais , Lógica Fuzzy , Detecção Precoce de Câncer , Redes Neurais de Computação
7.
Comput Biol Med ; 152: 106404, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36521356

RESUMO

In this paper, we proposed an enhanced reptile search algorithm (RSA) for global optimization and selected optimal thresholding values for multilevel image segmentation. RSA is a recent metaheuristic optimization algorithm depending on the hunting behavior of crocodiles. RSA is inclined to inadequate diversity, local optima, and unbalanced exploitation abilities as other metaheuristic algorithms. The RUNge Kutta optimizer (RUN) is a novel metaheuristic algorithm that has demonstrated effectiveness in solving real-world optimization problems. The enhanced solution quality (ESQ) in RUN utilizes the thus-far best solution to promote the quality of solutions, improve the convergence speed, and effectively balance the exploration and exploitation steps. Also, the Scale factor (SF) has a randomized adaptation nature, which helps RUN in further improving the exploration and exploitation steps. This parameter ensures a smooth transition from exploration to exploitation. In order to mitigate the drawbacks of the RSA algorithm, this paper proposed a modified RSA (mRSA), which combines the RSA algorithm with the RUN. The ESQ mechanism and the scale factor boost the original RSA's performance, enhance convergence speed, bypass local optimum, and enhance the balance between exploitation and exploration. The validity of mRSA was verified using two experimental sequences. First, we applied mRSA to CEC'2020 benchmark functions of various types and dimensions, showing that mRSA has more robust search capabilities than the original RSA and popular counterpart algorithms concerning statistical, convergence, and diversity measurements. The second experiment evaluated mRSA for a real-world application to solve magnetic resonance imaging (MRI) brain image segmentation. Overall experimental results confirm that the mRSA has a strong optimization ability. Also, mRSA method is a more successful multilevel thresholding segmentation and outperforms comparison methods according to different performance measures.


Assuntos
Imageamento por Ressonância Magnética , Staphylococcus aureus Resistente à Meticilina , Animais , Encéfalo/diagnóstico por imagem , Répteis , Algoritmos , Benchmarking
8.
Micromachines (Basel) ; 13(11)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36363933

RESUMO

A wideband circularly polarized rectangular dielectric resonator antenna (DRA) fed by a single feeding mechanism has been studied theoretically and experimentally. The purpose of the study is to determine how adding a parasitic strip next to the flat surface metallic feed would affect various far- and near-field antenna characteristics. Initially, the basic antenna design, i.e., the T-shape feed known as antenna A, produced a 4.81% impedance matching bandwidth (|S11| -10 dB). Due to the narrow and undesirable results of the initial antenna design, antenna-A was updated to the antenna-B design, i.e., Yagi-Uda. The antenna-B produced a decent result (7.89% S11) as compared to antenna-A but still needed the bandwidth widened, for this, a parasitic patch was introduced next to the Yagi-Uda antenna on the rectangular DRA at an optimized location to further improve the results. This arrangement produced circular polarization (CP) waves spanning a broad bandwidth of 28.21% (3.59-3.44 GHz) and a broad impedance |S11| bandwidth of around 29.74% (3.71-3.62 GHz). These findings show that, in addition to producing CP, parasite patches also cause the return loss to rise by a factor of almost three times when compared to results obtained with the Yagi-Uda-shape feed alone. Computer simulation technology was used for the simulation (CST-2017). The planned antenna geometry prototype was fabricated and measured. Performance indicators show that the suggested antenna is a good fit for 5G applications. The simulated outcomes and measurements match up reasonably.

9.
Sensors (Basel) ; 22(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36366109

RESUMO

In recent years, fire detection technologies have helped safeguard lives and property from hazards. Early fire warning methods, such as smoke or gas sensors, are ineffectual. Many fires have caused deaths and property damage. IoT is a fast-growing technology. It contains equipment, buildings, electrical systems, vehicles, and everyday things with computing and sensing capabilities. These objects can be managed and monitored remotely as they are connected to the Internet. In the Internet of Things concept, low-power devices like sensors and controllers are linked together using the concept of Low Power Wide Area Network (LPWAN). Long Range Wide Area Network (LoRaWAN) is an LPWAN product used on the Internet of Things (IoT). It is well suited for networks of things connected to the Internet, where terminals send a minute amount of sensor data over large distances, providing the end terminals with battery lifetimes of years. In this article, we design and implement a LoRaWAN-based system for smart building fire detection and prevention, not reliant upon Wireless Fidelity (Wi-Fi) connection. A LoRa node with a combination of sensors can detect smoke, gas, Liquefied Petroleum Gas (LPG), propane, methane, hydrogen, alcohol, temperature, and humidity. We developed the system in a real-world environment utilizing Wi-Fi Lora 32 boards. The performance is evaluated considering the response time and overall network delay. The tests are carried out in different lengths (0-600 m) and heights above the ground (0-2 m) in an open environment and indoor (1st Floor-3rd floor) environment. We observed that the proposed system outperformed in sensing and data transfer from sensing nodes to the controller boards.


Assuntos
Fontes de Energia Elétrica , Fumaça , Monitorização Fisiológica/métodos , Umidade , Temperatura
10.
Micromachines (Basel) ; 13(7)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35888899

RESUMO

This paper describes a singly-fed circularly polarized rectangular dielectric resonator antenna (RDRA) for MIMO and 5G Sub 6 GHz applications. Circular polarization was achieved for both ports using a novel-shaped conformal metal strip. To improve the isolation between the radiators, a "S" shaped defective ground plane structure (DGPS) was used. In order to authenticate the estimated findings, a prototype of the suggested radiator was built and tested experimentally. Over the desired band, i.e., 3.57-4.48 GHz, a fractional impedance bandwidth of roughly 36.63 percent (-10 dB as reference) was reached. Parallel axial ratio bandwidth of 28.33 percent is achieved, which is in conjunction with impedance matching bandwidth. Between the ports, isolation of -28 dB is achieved Gain and other far-field parameters are also calculated and found to be within their optimum limits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...