Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acc Chem Res ; 57(5): 726-738, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38387878

RESUMO

ConspectusBiologically active compounds and pharmaceutically relevant intermediates often feature sterically congested stereogenic centers, in particular, carbon stereocenters that are either tertiary tetrasubstituted ones or quaternary in nature. Synthons that comprise such bulky and often structurally complex core units are of high synthetic value and represent important incentives for communities connected to drug discovery and development. Streamlined approaches that give access to a diverse set of compounds incorporating acyclic bulky stereocenters are relatively limited, though vital. They enable further exploration of three-dimensional entities that can be designed and implemented in discovery programs, thereby extending the pool of molecular properties that is inaccessible for flat molecules. However, the lack of modular substrates in particular areas of chemical space inspired us to consider functionalized heterocycles known as cyclic carbonates and carbamates as a productive way to create sterically crowded alkenes and stereocenters.In this Account, we describe the major approximations we followed over the course of 8 years using transition metal (TM) catalysis as an instrument to control the stereochemical course of various allylic and propargylic substitution processes and related transformations. Allylic substitution reactions empowered by Pd-catalysis utilizing a variety of nucleophiles are discussed, with amination being the seed of all of this combined work. These procedures build on vinyl-substituted cyclic carbonates (VCCs) that are simple and easy-to-access precursors and highly modular in nature compared to synthetically limited vinyl oxiranes. Overall these decarboxylative conversions take place with either "linear" or "branched" regioselectivities that are ligand controlled and offer access to a wide scope of functional allylic scaffolds. Alternative approaches, including dual TM/photocatalyzed transformations, allowed us to expand the repertoire of challenging stereoselective conversions. This was achieved through key single-electron pathways and via formal umpolung of intermediates, resulting in new types of carbon-carbon bond formation reactions significantly expanding the scope of allylic substitution reactions.Heterocyclic substrate variants that have triple bond functional groups were also designed by us to enable difficult-to-promote stereoselective propargylic substitution reactions through TM catalysis. In these processes, inspired by the Nishibayashi laboratory and their seminal findings in the area, we discovered various new reactivity patterns. This provided access to a range of different stereodefined building blocks such as 1,2-diborylated 1,3-dienes and tetrasubstituted α-allenols under Cu- or Ni-catalysis. In this realm, the use of lactone-derived substrates gives access to elusive chiral γ-amino acids and lactams with high stereofidelity and good structural diversity.Apart from the synthetic efforts, we have elucidated some of the pertinent mechanistic manifolds operative in these transformations to better understand the limitations and opportunities with these specifically functionalized heterocycles that allowed us to create complex synthons. We combined both theoretical and experimental investigations that lead to several unexpected outcomes in terms of enantioinduction models, catalyst preactivation, and intermediates that are intimately connected to rationales for the observed selectivity profiles. The combined work we have communicated over the years offers insight into the unique reactivity of cyclic carbonates/carbamates acting as privileged precursors. It may inspire other members of the synthetic communities to widen the scope of precursors toward novel stereoselective transformations with added value in drug discovery and development in both academic and commercial settings.

2.
Angew Chem Int Ed Engl ; 62(50): e202314865, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37931062

RESUMO

Asymmetric synthesis of small molecules comprising quaternary stereogenic carbon centers represents a challenging objective. Here regio- and enantioselective synthesis of chiral 1,5-dienes featuring quaternary stereocenters is reported via nickel-promoted by reductive homoallylic coupling. The developed methodology features an atypical preference for the formation of unusual branched regioisomers (rr >20 : 1) in a sterically challenging allylic substitution event and furnishes the products with enantiomeric ratios of up to 98 : 2 and with high chemo- and E-selectivity. A range of experimental evidences suggest that zinc plays a dual role to generate electrophilic and nucleophilic Ni(II)-allyl intermediates empowering a unique formal bimetallic cross-electrophile manifold in two separate kinetic regimes.

3.
Org Lett ; 23(11): 4447-4451, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34014097

RESUMO

Dual palladium/photoredox-catalysis provides an effective method for the decarboxylative asymmetric synthesis of vicinal α,ß-tri/tetra- or α,ß-tetrasubstituted homoallylic alcohols using Hantzsch-type esters as radical precursors. This mild methodology capitalizes on vinyl cyclic carbonates as accessible reagents providing the target molecules in appreciable to good yields, high branch selectivity, and enantiomeric ratios of up to 94:6, making it a rare example of using prochiral electrophiles for the creation of vicinal congested carbon centers.

4.
Org Lett ; 22(17): 7034-7040, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32816494

RESUMO

A secondary phosphine oxide (SPO)-nickel catalyst allowed the activation of otherwise inert C-F bonds of unactivated arenes in terms of challenging couplings with primary and secondary alkyl Grignard reagents. The C-F activation is characterized by mild reaction conditions and high levels of branched selectivity. Electron-rich and electron-deficient arenes were suitable electrophiles for this transformation. In addition, this strategy also proved suitable to heterocycles and for the activation of C-O bonds under slightly modified conditions.

5.
Angew Chem Int Ed Engl ; 59(27): 10955-10960, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32154625

RESUMO

The merger of cobalt-catalyzed C-H activation and electrosynthesis provides new avenues for resource-economical molecular syntheses, unfortunately their reaction mechanisms remain poorly understood. Herein, we report the identification and full characterization of electrochemically generated high-valent cobalt(III/IV) complexes as crucial intermediates in electrochemical cobalt-catalyzed C-H oxygenations. Detailed mechanistic studies provided support for an oxidatively-induced reductive elimination via highly-reactive cobalt(IV) intermediates. These key insights set the stage for unprecedented cobaltaelectro two-fold C-H/C-H activation.

6.
Angew Chem Int Ed Engl ; 58(6): 1749-1753, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30517772

RESUMO

Highly enantioselective nickel-catalyzed alkene endo-hydroarylations were accomplished with full selectivity by organometallic C-H activation. The asymmetric assembly of chiral six-membered scaffolds proved viable in the absence of pyrophoric organoaluminum reagents within an unprecedented nickel/JoSPOphos manifold.

7.
ACS Omega ; 3(2): 1614-1620, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31458483

RESUMO

Rollover C-H activation with transition-metal complexes has been found to be a difficult but viable pathway to functionalize potentially chelating molecules, which are otherwise reluctant to react further. However, selective rollover or nonrollover C-H activation pathway depends on the stereoelectronic demand of the associated organometallic intermediate(s). The presented work addresses the above issue on abnormal N-heterocyclic carbene (NHC) platform. Catalytic reactions of pyridine-imidazolium substrates with internal alkynes have been selectively guided toward either rollover or nonrollover C-H functionalization route via fulfilling the steric and electronic demands of the relevant rhodium(III)-abnormal NHC metallacyclic intermediates.

8.
Chem Commun (Camb) ; 53(65): 9113-9116, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28759075

RESUMO

C-H alkylations of purine nucleosides were achieved by means of user-friendly nickel catalysis with ample substrate scope and high levels of chemo, site and regio control, which among others enabled the direct fluorescent labeling of purines in terms of late stage diversification.

9.
Chem Commun (Camb) ; 50(96): 15159-62, 2014 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-25331451

RESUMO

Disclosed herein is the unique conjugative role of N-heterocyclic carbene (NHC) ligands as a directing group in aromatic C-H activation, coupled with a facile NHC-alkenyl annulative reductive elimination which guided the Rh(III)-catalyzed intermolecular annulations of imidazolium salts and alkynes under ambient conditions leading to structurally important imidazo[1,2-a]quinolinium motifs.

10.
Inorg Chem ; 53(8): 4117-29, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24712755

RESUMO

The α and ß-positions of pyrrole were substituted with 3,5-dimethylpyrazolylmethyl groups in a single step that involved the reaction between 2,5-dimethylaminomethylpyrrole and 3,5-dimethylpyrazole-1-carbinol, affording 2,3,4,5-tetrakis(3,5-dimethylpyrazol-1-ylmethyl)pyrrole LH in 40% yield. The coordination chemistry of this new polydentate ligand LH was explored by synthesizing several Pd(II), Cu(I), and Ag(I) complexes. When LH was used as a neutral ligand with [Pd(COD)Cl2], AgBF4, and CuX (X = Cl and I), compartmental type binuclear Pd(II) and Ag(I) complexes such as [Pd2Cl4(µ-C4HN-2,3,4,5-(CH2Me2pz)4-N,N,N,N)] and [Ag2(µ-C4HN-2,3,4,5-(CH2Me2pz)4-N,N,N,N)(CH3CN)2](2+)[BF4(-)]2 and cage-like copper(I) complexes [Cu2(µ-X)(µ-C4HN-2,3,4,5-(CH2Me2pz)4-N,N,N,N)](+)[CuX2](-) (X = Cl and I) containing a halide ion bridging in a bent fashion were obtained, respectively. Conversely, when the same metal precursors were treated with LH in the presence of n-BuLi, the multinuclear complexes [Pd2Cl3(µ-C4N-2,3,4,5-(CH2Me2pz)4-N,N,N,N,N)], [(Cu2(µ-I){µ-C4N-2,3,4,5-(CH2Me2pz)4-N,N,N,N,N})2Cu](+)I(-), and [Ag4(µ-C4N-2,3,4,5-(CH2Me2pz)4-N,N,N,N)2](2+)[BF4(-)]2 were obtained. In addition, the treatment of LH with [Pd(OAc)2] gave the mononuclear complex, [Pd(OAc)(C4N-2,3,4,5-(CH2Me2pz)4-N,N,N)]. The chloride analogue of this complex was obtained by the reaction of LH with [Pd(COD)Cl2] in the presence of triethylamine. The structures of all complexes were determined by single-crystal X-ray diffraction analyses, which revealed interesting structural features, including pyrazole arms adopting different conformations with respect to the pyrrole ring plane and linear two- and three-coordinated copper(I) and silver(I) atoms exhibiting weak interactions between the metal and the pyrrolic carbon atoms and Ag(I)···Ag(I) interactions. The observed shorter metal pyrrolide nitrogen (M-N) bond distances and the elongation of the C-C double and single bond distances of the pyrrole ring in these complexes probably indicates the presence of π-donation/π-back bonding between the metal and the pyrrole ring. These multinuclear complexes are novel, and their formations are favored by the multidentating nature of the ligand LH.

11.
Dalton Trans ; 41(31): 9503-12, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22805781

RESUMO

A new pyrrole based NNN-pincer ligand, 2,5-bis(3,5-dimethylpyrazolylmethyl)pyrrole 2, was readily synthesized in two steps from pyrrole in 56% yield. The lithiation of the pincer ligand 2 using n-BuLi led to isolation of the dimeric lithium complex, [Li{µ-C(4)H(2)N-2,5-(CH(2)Me(2)pz)(2)-N,N,N}](2) 4, in 23% crystalline yield. The transmetalation reaction of 4 with [Pd(PhCN)(2)Cl(2)] afforded the mononuclear Pd(II) complex, [PdCl{C(4)H(2)N-2,5-(CH(2)Me(2)pz)(2)-N,N,N}] 5, containing one chloride ion in 45% yield. Alternatively 5 was obtained in an excellent yield of 87% by the reaction 2 of with [Pd(COD)Cl(2)] in the presence of triethylamine. On the contrary, a 20-membered macrometalacyclic molecule, [Pd(2)Cl(4){µ-C(4)H(3)N-2,5-(CH(2)Me(2)pz)(2)-N,N}(2)] 6, in which two PdCl(2) units are bridged by two molecules of 2 to give a helical structure, was synthesized by the reaction of 2 with [Pd(COD)Cl(2)] in the absence of base. The acetate analogue of complex 5, [Pd(OAc){C(4)H(2)N-2,5-(CH(2)Me(2)pz)(2)-N,N,N}] 3, was obtained by the treatment of 2 with [Pd(OAc)(2)]. The pyrrole twist angle of 5 is higher than that of 3. Complexes 3 and 5 show an AB pattern for their methylene protons at room temperature in CDCl(3) as well as in DMSO-d(6). The variable temperature NMR studies showed that the acetate and chloride complexes exhibit slightly different coalescence temperatures, which is a solvent dependent phenomenon, and twist angles.

12.
Org Lett ; 12(14): 3212-5, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20572676

RESUMO

Azatripyrrolic 1 and azatetrapyrrolic 2 macrocycles were synthesized in a single step by the Mannich reaction of pyrrole in the presence of primary amine hydrochloride and were structurally characterized among several other higher analogue azapyrrolic macrocycles. Binding constants for the halide anion complexes are determined by (1)H NMR titrations and they show different binding stoichiometries.


Assuntos
Compostos Aza/química , Compostos Macrocíclicos/química , Pirróis/química , Halogênios/química , Bases de Mannich/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...