Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(6)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37871600

RESUMO

Proximitized 2D materials present exciting prospects for exploring new quantum properties, enabled by precise control of structures and interfaces through epitaxial methods. In this study, we investigated the structure of ultrathin coverages formed by depositing high-Z element bismuth (Bi) on monolayer graphene (MLG)/SiC(0001). By utilizing electron diffraction and scanning tunneling microscopy, ultrathin Bi nanostructures epitaxially grown on MLG were studied. Deposition at 300 K resulted in formation of needle-like Bi(110)-terminated islands elongated in the zig-zag direction and aligned at an angle of approximately 1.75∘with respect to the MLG armchair direction. By both strain and quantum size effects, the shape, the orientation and the thickness of the Bi(110) islands can be rationalized. Additionally, a minority phase of Bi(110) islands orthogonally aligned to the former ones were seen. The four sub-domains of this minority structure are attributed to the formation of mirror twin boundaries, resulting in two potential alignments of Bi(110) majority and minority domains with respect to each other, in addition to two possible alignments of the majority domain with respect to graphene. Notably, an annealing step at 410 K or lowering the deposition temperature, significantly increases the concentration of the Bi(110) minority domain. Our findings shed light on the structural control of proximitized 2D materials, showcasing the potential for manipulating 2D interfaces.

2.
Phys Rev Lett ; 129(11): 116802, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36154419

RESUMO

Besides graphene, further honeycomb 2D structures were successfully synthesized on various surfaces. However, almost flat plumbene hosting topologically protected edge states could not yet be realized. In this Letter, we investigated the intercalation of Pb on buffer layers on SiC(0001). Thereby, suspended and charge neutral graphene emerged, and the intercalated Pb formed plumbene honeycomb lattices, which are rotated by ±7.5° with respect to graphene. Along with this twist, a proximity-induced modulation of the hopping parameter in graphene opens a band gap of around 30 meV at the Fermi energy, giving rise to a metal-insulator transition. Moreover, the edges of the intercalated plumbene layers revealed edge states within the gap of the conduction bands at around 1 eV as expected for charge neutral plumbene.

3.
Materials (Basel) ; 14(24)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34947298

RESUMO

Intercalation experiments on epitaxial graphene are attracting a lot of attention at present as a tool to further boost the electronic properties of 2D graphene. In this work, we studied the intercalation of Pb using buffer layers on 6H-SiC(0001) by means of electron diffraction, scanning tunneling microscopy, photoelectron spectroscopy and in situ surface transport. Large-area intercalation of a few Pb monolayers succeeded via surface defects. The intercalated Pb forms a characteristic striped phase and leads to formation of almost charge neutral graphene in proximity to a Pb layer. The Pb intercalated layer consists of 2 ML and shows a strong structural corrugation. The epitaxial heterostructure provides an extremely high conductivity of σ=100 mS/□. However, at low temperatures (70 K), we found a metal-insulator transition that we assign to the formation of minigaps in epitaxial graphene, possibly induced by a static distortion of graphene following the corrugation of the interface layer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...