Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Catal Sci Technol ; 14(11): 3029-3040, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38841155

RESUMO

This work employs ambient pressure X-ray photoelectron spectroscopy (APXPS) to delve into the atomic and electronic transformations of a core-shell Ni@NiO/NiCO3 photocatalyst - a model system for visible light active plasmonic photocatalysts used in water splitting for hydrogen production. This catalyst exhibits reversible structural and electronic changes in response to water vapor and solar simulator light. In this study, APXPS spectra were obtained under a 1 millibar water vapor pressure, employing a solar simulator with an AM 1.5 filter to measure spectral data under visible light illumination. The in situ APXPS spectra indicate that the metallic Ni core absorbs the light, exciting plasmons, and creates hot electrons that are subsequently utilized through hot electron injection in the hydrogen evolution reaction (HER) by NiCO3. Additionally, the data show that NiO undergoes reversible oxidation to NiOOH in the presence of water vapor and light. The present work also investigates the contribution of carbonate and its involvement in the photocatalytic reaction mechanism, shedding light on this seldom-explored aspect of photocatalysis. The APXPS results highlight the photochemical reduction of carbonates into -COOH, contributing to the deactivation of the photocatalyst. This work demonstrates the APXPS efficacy in examining photochemical reactions, charge transfer dynamics and intermediates in potential photocatalysts under near realistic conditions.

2.
J Synchrotron Radiat ; 30(Pt 3): 613-619, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37067260

RESUMO

The Ambient-Pressure X-ray Photoelectron Spectroscopy (APXPS) endstation at the SPECIES beamline at MAX IV Laboratory has been improved. The latest upgrades help in performing photo-assisted experiments under operando conditions in the mbar pressure range using gas and vapour mixtures whilst also reducing beam damage to the sample caused by X-ray irradiation. This article reports on endstation upgrades for APXPS and examples of scientific cases of in situ photocatalysis, photoreduction and photo-assisted atomic layer deposition (photo-ALD).

3.
Phys Chem Chem Phys ; 22(27): 15528-15540, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32608404

RESUMO

The gas-phase vibrational spectra of reactive (H2 and O2) and inert gases (N2 and Ar) have been studied by near-ambient pressure (NAP) ultraviolet photoelectron spectroscopy (NAPUPS) up to 0.3 mbar pressure. The results obtained are divided into two parts and discussed. In the first part, the photoelectron spectra of monoatomic Ar and some homonuclear diatomic molecules, such as H2, O2, and N2, have been recorded by NAPUPS and the effect of pressure on their energy position has been studied. It has been demonstrated that NAPUPS could be an essential tool to determine the intermolecular or interatomic interactions. In the second part, we have evaluated the influence of different solid surfaces on the binding energy (BE) position, the pattern of the vibrational features of diatomic N2 molecules, and the first atomic levels (3p3/2 and 3p1/2) of monoatomic Ar. It has been observed that with a change in the (electronic/chemical) nature of the surface, the BE of the above features also changes and reflects the change in the work function (φ) of the material. It is to be noted that Ar is an inert/noble gas and N2 is the most stable molecule, and the above changes observed underscore that they can be employed as probe atoms/molecules to explore even the minor changes that occur on a solid surface due to a variety of reasons. Further, if the solid surface undergoes any chemical/electronic changes due to gas-solid interaction, such as oxidation/reduction, the φ of the surface changes again; this highlights the precise identification of the changes that occur under the reaction/measurement conditions. Therefore, the change in the BE of the gas-phase features can be used to determine even the minor changes in the φ of solid surfaces during the reaction or due to the reaction. The present findings have implications in probing the surface changes that occur in any surface-dependent phenomena, such as heterogeneous catalysis, electrochemistry, and materials that are predominantly controlled by surface contribution, such as layered (2D) materials, nanomaterials.

4.
Dalton Trans ; 48(32): 12199-12209, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31334723

RESUMO

Carbon dioxide is a greenhouse gas, and needs to be converted into one of the useful feedstocks, such as carbon monoxide and methanol. We demonstrate the reduction of CO2 with H2 as a reducing agent, via a reverse water gas shift (RWGS) reaction, by using a potential and low cost Mo2C catalyst. Mo2C was evaluated for CO2 hydrogenation at ambient pressure as a function of temperature, and CO2 : H2 ratio at a gas hourly space velocity (GHSV) of 20 000 h-1. It is demonstrated that the Mo2C catalyst with 1 : 3 ratio of CO2 : H2 is highly active (58% CO2 conversion) and selective (62%) towards CO at 723 K at ambient pressure. Both properties (basicity and redox properties) and high catalytic activity observed with Mo2C around 700 K correlate well and indicate a strong synergy among them towards CO2 activation. X-ray diffraction and Raman analysis show that the Mo2C catalyst remains in the ß-Mo2C form before and after the reaction. The mechanistic aspects of the RWGS reaction were determined by near-ambient pressure X-ray photoelectron spectroscopy (NAPXPS) with in situ generated Mo2C from carburization of Mo-metal foil. NAPXPS measurements were carried out at near ambient pressure (0.1 mbar) and various temperatures. Throughout the reaction, no significant changes in the Mo2+ oxidation state (of Mo2C) were observed indicating that the catalyst is highly stable; C and O 1s spectral results indicate the oxycarbide species as an active intermediate for RWGS. A good correlation is observed between catalytic activity from atmospheric pressure reactors and the electronic structure details derived from NAPXPS results, which establishes the structure-activity correlation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA