Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(1)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36670996

RESUMO

Gymnema sylvestre (GS) is a perennial woody vine native to tropical Asia, China, the Arabian Peninsula, Africa and Australia. GS has been used as a medicinal plant with potential anti-microbial, anti-inflammatory and anti-oxidant properties. This study was conceptualized to evaluate the cytotoxicity potential of Gymnema sylvestre saponin rich fraction (GSSRF) on breast cancer cell lines (MCF-7 and MDA-MB-468) by SRB assay. The anti-tumor activity of GSSRF was assessed in tumor-bearing Elrich ascites carcinoma (EAC) and Dalton's lymphoma ascites (DLA) mouse models. The anti-oxidant potential of GSSRF was assessed by DPPH radical scavenging assay. The acute toxicity of GSSRF was carried out according to OECD guideline 425. The yield of GSSRF was around 1.4% and the presence of saponin content in GSSRF was confirmed by qualitative and Fourier transform infrared spectroscopic (FTIR) analysis. The in vitro cytotoxic effects of GSSRF on breast cancer cell lines were promising and found to be dose-dependent. An acute toxicity study of GSSRF was found to be safe at 2000 mg/kg body weight. GSSRF treatment has shown a significant increase in the body weight and the life span of EAC-bearing mice in a dose-dependent manner when compared with the control group. In the solid tumor model, the doses of 100 and 200 mg/kg body weight per day have shown about 46.70% and 60.80% reduction in tumor weight and controlled the tumor weight until the 30th day when compared with the control group. The activity of GSSRF in both models was similar to the cisplatin, a standard anticancer agent used in the study. Together, these results open the door for detailed investigations of anti-tumor potentials of GSSRF in specific tumor models, mechanistic studies and clinical trials leading to promising novel therapeutics for cancer therapy.

2.
Int J Pharm ; 588: 119729, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32768527

RESUMO

Green fabrication of nanoparticles (NPs) using biological sources is the fast-growing trend replacing chemical synthesis via toxic materials. Considering the importance and feasibility of green fabricated NPs, the present research focuses on the synthesis of gold nanoparticles (AuNPs) using the aqueous extract of the endophytic Cladosporium sp. (MycoAuNPs) isolated from Commiphora wightii. The synthesized MycoAuNPs are characterized using UV-Vis spectroscopic, FTIR, X-ray diffraction (XRD) analysis, and transmission electron microscopy (TEM). The synthesized NPs showed a sharp absorption peak at 524 nm, with an average size between 5 and 10 nm in a spherical shape. XRD revealed the crystalline nature, and EDX profiling confirmed the presence of gold (Au) and oxygen (O) atoms. The biological potential of MycoAuNPs were tested under both in vitro and in vivo conditions. MycoAuNPs showed anti-cancer activity in breast cancer cell line MCF-7 (IC50 38.23 µg/mL) through the induction of apoptosis. Further, MycoAuNPs showed potential against growth of tumor in tumor-bearing mice models. MycoAuNPs significantly reduced the body weight, ascites volume, and increased the lifespan of EAC bearing mice. It induced apoptosis of the EAC cells, which was confirmed by DNA fragmentation and Giemsa staining. Also, they did not develop any secondary complications or side effects in normal mice. The photocatalytic activity of MycoAuNPs tested against Rhodamine B and Methylene Blue dyes showed potential dye degradation in the presence of sunlight. Thus, the present study gives a clear idea of the multifaceted therapeutic and catalytic applications of the biosynthesized MycoAuNPs.


Assuntos
Cladosporium , Ouro , Nanopartículas Metálicas , Extratos Vegetais , Animais , Química Verde , Camundongos , Microscopia Eletrônica de Transmissão , Fotólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...