Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 137(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38832798

RESUMO

Plasmodium sporozoites are the infective forms of the malaria parasite in the mosquito and vertebrate host. Gliding motility allows sporozoites to migrate and invade mosquito salivary glands and mammalian hosts. Motility and invasion are powered by an actin-myosin motor complex linked to the glideosome, which contains glideosome-associated proteins (GAPs), MyoA and the myosin A tail-interacting protein (MTIP). However, the role of several proteins involved in gliding motility remains unknown. We identified that the S14 gene is upregulated in sporozoite from transcriptome data of Plasmodium yoelii and further confirmed its transcription in P. berghei sporozoites using real-time PCR. C-terminal 3×HA-mCherry tagging revealed that S14 is expressed and localized on the inner membrane complex of the sporozoites. We disrupted S14 in P. berghei and demonstrated that it is essential for sporozoite gliding motility, and salivary gland and hepatocyte invasion. The gliding and invasion-deficient S14 knockout sporozoites showed normal expression and organization of inner membrane complex and surface proteins. Taken together, our data show that S14 plays a role in the function of the glideosome and is essential for malaria transmission.


Assuntos
Malária , Plasmodium berghei , Proteínas de Protozoários , Esporozoítos , Esporozoítos/metabolismo , Plasmodium berghei/metabolismo , Plasmodium berghei/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Animais , Camundongos , Malária/parasitologia , Glândulas Salivares/parasitologia , Glândulas Salivares/metabolismo , Anopheles/parasitologia
2.
J Comput Chem ; 45(14): 1160-1176, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38299229

RESUMO

Molecular properties and reactions form the foundation of chemical space. Over the years, innumerable molecules have been synthesized, a smaller fraction of them found immediate applications, while a larger proportion served as a testimony to creative and empirical nature of the domain of chemical science. With increasing emphasis on sustainable practices, it is desirable that a target set of molecules are synthesized preferably through a fewer empirical attempts instead of a larger library, to realize an active candidate. In this front, predictive endeavors using machine learning (ML) models built on available data acquire high timely significance. Prediction of molecular property and reaction outcome remain one of the burgeoning applications of ML in chemical science. Among several methods of encoding molecular samples for ML models, the ones that employ language like representations are gaining steady popularity. Such representations would additionally help adopt well-developed natural language processing (NLP) models for chemical applications. Given this advantageous background, herein we describe several successful chemical applications of NLP focusing on molecular property and reaction outcome predictions. From relatively simpler recurrent neural networks (RNNs) to complex models like transformers, different network architecture have been leveraged for tasks such as de novo drug design, catalyst generation, forward and retro-synthesis predictions. The chemical language model (CLM) provides promising avenues toward a broad range of applications in a time and cost-effective manner. While we showcase an optimistic outlook of CLMs, attention is also placed on the persisting challenges in reaction domain, which would optimistically be addressed by advanced algorithms tailored to chemical language and with increased availability of high-quality datasets.

3.
Mol Microbiol ; 121(5): 940-953, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38419272

RESUMO

Plasmodium is an obligate intracellular parasite that requires intense lipid synthesis for membrane biogenesis and survival. One of the principal membrane components is oleic acid, which is needed to maintain the membrane's biophysical properties and fluidity. The malaria parasite can modify fatty acids, and stearoyl-CoA Δ9-desaturase (Scd) is an enzyme that catalyzes the synthesis of oleic acid by desaturation of stearic acid. Scd is dispensable in P. falciparum blood stages; however, its role in mosquito and liver stages remains unknown. We show that P. berghei Scd localizes to the ER in the blood and liver stages. Disruption of Scd in the rodent malaria parasite P. berghei did not affect parasite blood stage propagation, mosquito stage development, or early liver-stage development. However, when Scd KO sporozoites were inoculated intravenously or by mosquito bite into mice, they failed to initiate blood-stage infection. Immunofluorescence analysis revealed that organelle biogenesis was impaired and merozoite formation was abolished, which initiates blood-stage infections. Genetic complementation of the KO parasites restored merozoite formation to a level similar to that of WT parasites. Mice immunized with Scd KO sporozoites confer long-lasting sterile protection against infectious sporozoite challenge. Thus, the Scd KO parasite is an appealing candidate for inducing protective pre-erythrocytic immunity and hence its utility as a GAP.


Assuntos
Fígado , Malária , Merozoítos , Biogênese de Organelas , Plasmodium berghei , Esporozoítos , Estearoil-CoA Dessaturase , Plasmodium berghei/genética , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/metabolismo , Plasmodium berghei/enzimologia , Animais , Camundongos , Fígado/parasitologia , Merozoítos/crescimento & desenvolvimento , Merozoítos/metabolismo , Malária/parasitologia , Estearoil-CoA Dessaturase/metabolismo , Estearoil-CoA Dessaturase/genética , Esporozoítos/crescimento & desenvolvimento , Esporozoítos/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Anopheles/parasitologia , Feminino , Retículo Endoplasmático/metabolismo
4.
Langmuir ; 40(4): 2146-2164, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38240266

RESUMO

Proteolytic enzymes play a pivotal role in the industry. Still, because of denaturation, the extensive applicability at their level of best catalytic efficiency over a more comprehensive pH range, particularly in alkaline conditions over pH 8, has not been fully developed. On the other hand, enzyme immobilization following a suitable protocol is a long pending issue that determines the conformational stability, specificity, selectivity, enantioselectivity, and activity of the native enzymes at long-range pH. As a bridge between these two findings, in an attempt at a freezing temperature 273-278 K at an alkaline pH, the diazo-functionalized silica gel (SG) surface has been used to rapidly diazo couple pepsin through its inert center, the O-carbon of the phenolic -OH of surface-occupied Tyr residues in a multipoint mode: when all the various protein groups, viz., amino, thiol, phenol, imidazole, carboxy, etc., in the molecular sequence including those belonging to the active sites, remain intact, the inherent inbuilt interactions among themselves remain. Thereby, the macromolecule's global conformation and helicity preserve the status quo. The dimension of the SG-enzyme conjugate confirms as {Si(OSi)4 (H2O)1.03}n {-O-Si(CH3)2-O-C6H4-N═N+}4·{pepsin}·yH2O; where the values of n and y have been determined respectively as 347 and 188. The material performs the catalytic activity much better at 7-8.5 than at pH 2-3.5 and continues for up to six months without any appreciable change.


Assuntos
Enzimas Imobilizadas , Pepsina A , Pepsina A/metabolismo , Sílica Gel , Enzimas Imobilizadas/química , Proteínas , Concentração de Íons de Hidrogênio , Estabilidade Enzimática
5.
Langmuir ; 39(16): 5710-5726, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37039774

RESUMO

Although enzymes play a significant role in industrial applications, their potential usage at high-level efficiency, particularly above room temperature, has not yet been fully harnessed. It brings above room-temperature catalytic sustainability of an immobilized (imm.) bio-catalyst as a long pending issue to improve enzyme stability, activity, specificity, or selectivity, particularly the enantio-selectivity over the native-enzymes. At this juncture, in a robust methodology, a heterogeneous solid phase bio-catalyst, {Si(OSi)4(H2O)1.03}n=328{OSi(CH3)2-NH-C6H4-N═N}4{papain}(H2O)251, has efficiently been prepared by immobilizing papain on homo-functionalized SG (silica-gel) via multipoint covalent attachment. The bio-catalyst is easy to be recovered and reused multiple times. The homo-functional -N═N+, which appears on the SG-surface, makes the multipoint diazo-links with the inert center of the tyrosine-moiety to couple the enzyme where all the amino, thiol, phenol, and so forth, groups of the protein, including those that belong to the active-site, remain intact. The immobilized enzyme (13.9 µmol g-1) swims in pore-water within the pore-channel, remains stable up to 70 ± 5 °C, and exhibits wider temperature adaptability in performing its hydrolyzing activities. The relative activity, 78 ± 2% at 27 °C, remains quantitative for 60 days and can be reused for 60 cycles with 53% activity at room-temperature. The thermal (relative activity: 87%; incubated at 70 ± 5 °C for 24 h) and mechanical (relative activity: 92%; incubated at 2500 rpm for 2 h at 27 °C) stability was outstanding.


Assuntos
Papaína , Dióxido de Silício , Papaína/metabolismo , Temperatura , Enzimas Imobilizadas/metabolismo , Estabilidade Enzimática , Concentração de Íons de Hidrogênio
6.
Langmuir ; 38(22): 6826-6840, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35609014

RESUMO

At present, enzyme immobilization is a big issue. It improves enzyme stability, activity, specificity, or selectivity, particularly the enantioselectivity compared to the native enzymes, and by solving the separation problem, it helps in recovering the catalyst with good reusability as desired in vitro. Motivated by these facts, in this work, Jack bean urease (JBU) is immobilized on three-dimensional (3D)-network silica gel (SG) via multipoint covalent bonding employing dimethyldichlorosilane (DMDCS) and p-nitrophenol, respectively, as the second-generation silane-coupling reagent and spacer. The homofunctional diazo group appearing at the functionalized SG unit cell makes a diazo linkage at the inert center, the ortho position of the phenolic-OH of the tyrosine moiety, where all of the amino, thiol, phenol, imidazole, carboxy, etc., groups of the enzyme residues, including those that belong to the active site, remain intact. The coupling process, analyzed using field emission scanning electron microscopy (FESEM), energy-dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR) spectroscopy, ultraviolet-visible spectroscopy (UV-vis), and fluorescence spectroscopy, occurs without molecular aggregation in borate buffer at pH 8.8 ± 0.4, which is much higher than the iso-electric point (pH 5.1) of the macromolecule where it becomes soluble. Eventually, the immobilization is maximize and also the native-enzyme activities are restored remarkably. The immobilized catalyst converts urea (0.0625-0.15 mmol L-1) to ammonia appreciably (94.50 ± 1.5%) at 27 °C, and the efficiency is well comparable to that of the native enzyme (93.0 ± 0.4%). The efficiency gradually diminishes, coming down to 50% at the 40th cycle, and the enzyme returns to its native conformation within 72 h in tris-EDTA borate buffer at 27 °C for the next 40 cycles of reuse and so on. The efficiency becomes hindered by 8-10% in every 5th subsequent reuse to reach 50% on the 30th reuse, resulting in room-temperature catalytic sustainability of 90 days. The catalytic performances are well restored in rice extract and coconut water.


Assuntos
Boratos , Urease , Estabilidade Enzimática , Enzimas Imobilizadas/química , Concentração de Íons de Hidrogênio , Sílica Gel , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Urease/química
7.
Mol Biochem Parasitol ; 232: 111198, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31251952

RESUMO

Plasmodium sporozoites are infective forms of the parasite to mammalian hepatocytes. Sporozoite surface or secreted proteins likely play an important role in recognition, invasion and successful establishment of hepatocyte infection. By approaches of reverse genetics, we report the functional analysis of two Plasmodium berghei (Pb) sporozoite specific genes- PbS10 and PbS23/SSP3 that encode for proteins with a putative signal peptide. The expression of both genes was high in oocyst and salivary gland sporozoite stages as compared to other life cycle stages and PbS23/SSP3 protein was detected in salivary gland sporozoites. Both mutants were indistinguishable to wild-type parasites with regard to asexual growth in RBC, ability to complete sexual reproduction and form sporozoites in vector host. While the sporozoite stage of both mutants were able to glide and invade hepatocytes normally in vitro and in vivo, PbS10 mutants suffered growth attenuation at an early stage while PbS23/SSP3 mutants manifested defect during late exo-erythrocytic form maturation. Interestingly, both mutants gave rare breakthrough infections, suggesting that while both were critical for liver stage development, their depletion did not completely abrogate blood stage infection. These findings have important implications for weakening sporozoites by multiple gene attenuation towards the generation of a safe whole organism vaccine.


Assuntos
Malária/parasitologia , Plasmodium berghei/metabolismo , Proteínas de Protozoários/metabolismo , Esporozoítos/crescimento & desenvolvimento , Animais , Eritrócitos/parasitologia , Feminino , Humanos , Estágios do Ciclo de Vida , Camundongos , Camundongos Endogâmicos C57BL , Oocistos/genética , Oocistos/crescimento & desenvolvimento , Oocistos/metabolismo , Plasmodium berghei/genética , Plasmodium berghei/crescimento & desenvolvimento , Proteínas de Protozoários/genética , Especificidade da Espécie , Esporozoítos/genética , Esporozoítos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...