Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 10(19): 11060-11073, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35495315

RESUMO

Materials capable of releasing reactive oxygen species (ROS) can display antibacterial and anticancer activity, and may also have anti-oxidant capacity if they suppress intracellular ROS (e.g. nitric oxide, NO) resulting in anti-inflammatory activity. Herein we report silver phosphate (Ag3PO4)/polyindole (Pln) nanocomposites which display antibacterial, anticancer and anti-inflammatory activity, and have therefore potential for a variety of biomedical applications.

2.
Sci Rep ; 8(1): 3728, 2018 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-29487340

RESUMO

Using high resolution powder x-ray and neutron diffraction experiments, we determined the off-centered displacement of the ions within a unit cell and magnetoelectric coupling in nanoscale BiFeO3 (≈20-200 nm). We found that both the off-centered displacement of the ions and magnetoelectric coupling exhibit nonmonotonic variation with particle size. They increase as the particle size reduces from bulk and reach maximum around 30 nm. With further decrease in particle size, they decrease precipitously. The magnetoelectric coupling is determined by the anomaly in off-centering of ions around the magnetic transition temperature (T N ). The ions, in fact, exhibit large anomalous displacement around the T N which is analyzed using group theoretical approach. It underlies the nonmonotonic particle-size-dependence of off-centre displacement of ions and magnetoelectric coupling. The nonmonotonic variation of magnetoelectric coupling with particle size is further verified by direct electrical measurement of remanent ferroelectric hysteresis loops at room temperature under zero and ∼20 kOe magnetic field. Competition between enhanced lattice strain and compressive pressure appears to be causing the nonmonotonic particle-size-dependence of off-centre displacement while coupling between piezo and magnetostriction leads to nonmonotonicity in the variation of magnetoelectric coupling.

3.
Dalton Trans ; 43(21): 7930-44, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24714977

RESUMO

The magnetic properties of copper ferrite (CuFe2O4) nanoparticles prepared via sol-gel auto combustion and facile solvothermal method are studied focusing on the effect of nanoparticle arrangement. Randomly oriented CuFe2O4 nanoparticles (NP) are obtained from the sol-gel auto combustion method, while the solvothermal method allows us to prepare iso-oriented uniform spherical ensembles of CuFe2O4 nanoparticles (NS). X-ray diffractometry (XRD), atomic absorption spectroscopy (AAS), infra-red (IR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), (57)Fe Mössbauer spectroscopy and vibrating sample magnetometer (VSM) are used to investigate the composition, microstructure and magnetic properties of as-prepared ferrite nanoparticles. The field-dependent magnetization measurement for the NS sample at low temperature exhibits a step-like rectangular hysteresis loop (M(R)/M(S) ~ 1), suggesting cubic anisotropy in the system, whereas for the NP sample, typical features of uniaxial anisotropy (M(R)/M(S) ~ 0.5) are observed. The coercive field (HC) for the NS sample shows anomalous temperature dependence, which is correlated with the variation of effective anisotropy (K(E)) of the system. A high-temperature enhancement of H(C) and K(E) for the NS sample coincides with a strong spin-orbit coupling in the sample as evidenced by significant modification of Cu/Fe-O bond distances. The spherical arrangement of nanocrystals at mesoscopic scale provokes a high degree of alignment of the magnetic easy axis along the applied field leading to a step-like rectangular hysteresis loop. A detailed study on the temperature dependence of magnetic anisotropy of the system is carried out, emphasizing the influence of the formation of spherical iso-oriented assemblies.

4.
ACS Appl Mater Interfaces ; 5(2): 331-7, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23245288

RESUMO

Type-II p-n junction three-dimensional Ag(2)O/TiO(2) microspheres have been fabricated by assembling p-type Ag(2)O nanoparticle on n-type TiO(2) 3D microsphere. Ag(2)O/TiO(2) microsphere nanoheterojunctions were obtained by hydrothermal synthesis of TiO(2) microspheres at 180 °C followed by photoreduction of AgNO(3). The samples were carefully characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), and energy dispersive X-ray analysis (EDX). The photocatalytic activity toward degradation of methyl orange (MO) aqueous solution under UV light was investigated. The result showed that type-II p-n nanoheterojunctions Ag(2)O/TiO(2) significantly enhanced the photocatalytic degradation compared to n-type TiO(2) microsphere. It was found that the photocatalytic degradation followed the pseudo first-order reaction model. In particular, heterostructure with molar ratio of TiO(2) and AgNO(3) of 4:1 exhibited best photocatalytic activity and the corresponding apparent first-order rate constant of 0.138 min(-1) which is 4 times than that of pure n-type microsphere.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...