Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; 16(24): e202300631, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37614201

RESUMO

Decavanadate ([V10 O28 ]6- , {V10 }) clusters are a potential electrode material for lithium and post-lithium batteries; however, their low stability due to the solubility in liquid organic electrolytes has been challenging. These molecular clusters are also prone to transform into solid-state oxides at a moderate temperature needed in the typical electrode fabrication process. Hence, controlling the solubility and improving the thermal stability of compounds are essential to make them more viable options for use as battery electrodes. This study shows a crystal engineering approach to stabilize the cluster with organic guanidinium (Gdm+ ) cation through the hydrogen-bonding interactions between the amino groups of the cation and the anion. The comparison of solubility and thermal stability of the Gdm{V10 } with another cluster bearing tetrabutylammonium (Tba+ ) cation reveals the better stability of cation-anion assembly in the former than the latter. As a result, the Gdm{V10 } delivers better rate capability and cycling stability than Tba{V10 } when tested as anode material in a half-cell configuration of a sodium-ion battery. Finally, the performance of the Gdm{V10 } anode is also investigated in a lithium-ion battery full cell with LiFePO4 cathode.

2.
Nanoscale ; 13(28): 12314-12326, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34254629

RESUMO

P(NDI2OD-T2), also known as Polyera ActivInk N2200, is a widely accepted non-fullerene acceptor polymer that is used prominently in the energy harvesting application due to its ease of synthesis, high electron mobility, and other desirable semiconducting properties. With its recent foray into energy storage applications, there is tremendous potential for developing composites of N2200 with carbon nanotubes (CNTs) to improve its electrical properties and extend its applicability. Here we report a facile synthesis of an N2200 composite with multiwalled carbon nanotubes (MWCNTs) following an in situ approach to include MWCNTs into the polymer matrix, improving its electrochemical performance in an organic electrolyte (1 M LiClO4/propylene carbonate). The composite material with an optimum MWCNT content exhibits prominent redox behavior delivering a specific capacity of 80 mA h g-1(polymer) in a standard three-electrode cell. Moreover, the N2200/MWCNT composite material showing a battery-type electrochemical signature could perform as an efficient negative electrode in a high-voltage (2.4 V) hybrid supercapacitor device comprising capacitive activated carbon as the positive electrode.

3.
Dalton Trans ; 50(12): 4237-4243, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33751012

RESUMO

Rechargeable batteries consisting of a Zn metal anode and a suitable cathode coupled with a Zn2+ ion-conducting electrolyte are recently emerging as promising energy storage devices for stationary applications. However, the formation of high surface area Zn (HSAZ) architectures on the metallic Zn anode deteriorates their performance upon prolonged cycling. In this work, we demonstrate the application of 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTCDA), an organic compound, as a replacement for the Zn-metal anode enabling the design of a 'rocking-chair'zinc-proton hybrid ion battery. The NTCDA electrode material displays a multi-plateau redox behaviour, delivering a specific discharge capacity of 143 mA h g-1 in the potential window of 1.4 V to 0.3 V vs. Zn|Zn2+. The detailed electrochemical characterization of NTCDA in various electrolytes (an aqueous solution of 1 M ZnOTF, an aqueous solution of 0.01 M H2SO4, and an organic electrolyte of 0.5 M ZnOTF/acetonitrile) reveals that the redox processes leading to charge storage involve a contribution from both H+ and Zn2+. The performance of NTCDA as an anode is further demonstrated by pairing it with a MnO2 cathode, and the resulting MnO2||NTCDA full-cell (zinc-proton hybrid ion battery) delivers a specific discharge capacity of 41 mA h gtotal-1 (normalized with the total mass-loading of both anode and cathode active materials) with an average operating voltage of 0.80 V.

4.
ACS Appl Mater Interfaces ; 12(43): 48542-48552, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33076656

RESUMO

Rechargeable aqueous zinc-metal batteries (ZMBs) are considered as potential energy storage devices for stationary applications. Despite the significant developments in recent years, the performance of ZMBs is still limited due to the lack of advanced cathode materials delivering high capacity and long cycle life. In this work, we report a low-temperature and scalable synthesis method following a surfactant-assisted route for preparing manganese-doped hydrated vanadium oxide (MnHVO-30) and its application as the cathode material for ZMB. The as-prepared material possesses a porous architecture and expanded interlayer spacing. Therefore, the MnHVO-30 cathode offers fast and reversible insertion of Zn2+ ions during the charge/discharge process and delivers 341 mAh g-1 capacity at 0.1 A g-1. Moreover, the MnHVO-30||Zn cell retains 82% of its initial capacity over 1200 stability cycles, which is higher compared to that of the undoped system. Besides, a quasi-solid-state home-made pouch cell with an area of 3.3 × 1.6 cm2 and 3.6 mg cm-2 loading is assembled, achieving 115 mAh g-1 capacity over 100 stability cycles. Therefore, this work provides an easy and attractive way for preparing efficient cathode materials for aqueous ZMBs.

5.
Small ; 16(35): e2002528, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32734717

RESUMO

This work reports the facile synthesis of nonaqueous zinc-ion conducting polymer electrolyte (ZIP) membranes using an ultraviolet (UV)-light-induced photopolymerization technique, with room temperature (RT) ionic conductivity values in the order of 10-3 S cm-1 . The ZIP membranes demonstrate excellent physicochemical and electrochemical properties, including an electrochemical stability window of >2.4 V versus Zn|Zn2+ and dendrite-free plating/stripping processes in symmetric Zn||Zn cells. Besides, a UV-polymerization-assisted in situ process is developed to produce ZIP (abbreviated i-ZIP), which is adopted for the first time to fabricate a nonaqueous zinc-metal polymer battery (ZMPB; VOPO4 |i-ZIP|Zn) and zinc-metal hybrid polymer supercapacitor (ZMPS; activated carbon|i-ZIP|Zn) cells. The VOPO4 cathode employed in ZMPB possesses a layered morphology, exhibiting a high average operating voltage of ≈1.2 V. As compared to the conventional polymer cell assembling approach using the ex situ process, the in situ process is simple and it enhances the overall electrochemical performance, which enables the widespread intrusion of ZMPBs and ZMPSs into the application domain. Indeed, considering the promising aspects of the proposed ZIP and its easy processability, this work opens up a new direction for the emergence of the zinc-based energy storage technologies.

6.
Chem Sci ; 10(38): 8889-8894, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31762974

RESUMO

The two-dimensional structural features of covalent organic frameworks (COFs) can promote the electrochemical storage of cations like H+, Li+, and Na+ through both faradaic and non-faradaic processes. However, the electrochemical storage of cations like Zn2+ ion is still unexplored although it bears a promising divalent charge. Herein, for the first time, we have utilized hydroquinone linked ß-ketoenamine COF acting as a Zn2+ anchor in an aqueous rechargeable zinc ion battery. The charge-storage mechanism comprises of an efficient reversible interlayer interaction of Zn2+ ions with the functional moieties in the adjacent layers of COF (-182.0 kcal mol-1). Notably, due to the well-defined nanopores and structural organization, a constructed full cell, displays a discharge capacity as high as 276 mA h g-1 at a current rate of 125 mA g-1.

7.
ACS Appl Mater Interfaces ; 11(34): 30828-30837, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31386343

RESUMO

The redox-active and porous structural backbone of covalent organic frameworks (COFs) can facilitate high-performance electrochemical energy storage devices. However, the utilities of such 2D materials as supercapacitor electrodes in advanced self-charging power-pack systems have been obstructed due to the poor electrical conductivity and subsequent indigent performance. Herein, we report an effective strategy to enhance the electrical conductivity of COF thin sheets through the in situ solid-state inclusion of carbon nanofibers (CNF) into the COF precursor matrix. The obtained COF-CNF hybrids possess a significant intermolecular π···π interaction between COF and the graphene layers of the CNF. As a result, these COF-CNF hybrids (DqTp-CNF and DqDaTp-CNF) exhibit good electrical conductivity (0.25 × 10-3 S cm-1), as well as high performance in electrochemical energy storage (DqTp-CNF: 464 mF cm-2 at 0.25 mA cm-2). Also, the fabricated, mechanically strong quasi-solid-state supercapacitor (DqDaTp-CNF SC) delivered an ultrahigh device capacitance of 167 mF cm-2 at 0.5 mA cm-2. Furthermore, we integrated a monolithic photovoltaic self-charging power pack by assembling DqDaTp-CNF SC with a perovskite solar cell. The fabricated self-charging power pack delivered excellent performance in the areal capacitance (42 mF cm-2) at 0.25 mA cm-2 after photocharging for 300 s.

8.
J Am Chem Soc ; 140(35): 10941-10945, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30132332

RESUMO

Covalent organic frameworks (COFs) have emerged as promising electrode materials in supercapacitors (SCs). However, their insoluble powder-like nature, poor capacitive performance in pristine form, integrated with inferior electrochemical stability is a primary concern for their long-term use in electrochemical devices. Keeping this in perspective, herein we report a redox active and hydrogen bonded COF with ultrahigh stability in conc. H2SO4 (18 M), conc. HCl (12 M) and NaOH (9 M). The as-synthesized COF fabricated as thin sheets were efficiently employed as a free-standing supercapacitor electrode material using 3 M aq. H2SO4 as an electrolyte. Moreover, the pristine COF sheet showcased outstanding areal capacitance 1600 mF cm-2 (gravimetric 169 F g-1) and excellent cyclic stability (>100 000) without compromising its capacitive performance or Coulombic efficiency. Moreover, as a proof-of-concept, a solid-state supercapacitor device was also assembled and subsequently tested.

9.
Nanoscale ; 10(18): 8741-8751, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29707713

RESUMO

The maximum capacitive potential window of certain pseudocapacitive materials cannot be accessed in aqueous electrolytes owing to the low dissociation potential of 1.2 V possessed by water molecules. However, the inferior pseudocapacitance exhibited by the commonly used electrode materials when integrated with non-aqueous electrolytes still remains a challenge in the development of supercapacitors (SC). Proper selection of materials for the electrode and a rational design process are indeed important to overcome these practical intricacies so that such systems can perform well with non-aqueous electrolytes. We address this challenge by fabricating a prototype all-solid-state device designed with high-capacitive V2O5 as the electrode material along with a Li-ion conducting organic electrolyte. V2O5 is synthesized on a pre-treated carbon-fibre paper by adopting an electrochemical deposition technique that effects an improved contact resistance. A judicious electrode preparation strategy makes it possible to overcome the constraints of the low ionic and electrical conductivities imposed by the electrolyte and electrode material, respectively. The device, assembled in a symmetrical fashion, achieves a high specific capacitance of 406 F g-1 (at 1 A g-1). The profitable aspect of using an organic electrolyte is also demonstrated with an asymmetric configuration by using activated carbon as the positive and V2O5 as the negative electrode materials, respectively. The asymmetric device displays a wide working-voltage window of 2.8 V and delivers a high energy density of 102.68 W h kg-1 at a power density of 1.49 kW kg-1. Moreover, the low equivalent series resistance of 9.9 Ω and negligible charge transfer resistance are observed in the impedance spectra, which is a key factor that accounts for such an exemplary performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...