Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 48(6): 2108-2117, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30667002

RESUMO

A water-soluble dilithium salt BODIPY derivative (LiBDP) with appended dicarboxylate pseudo-crown ether [NO4] coordinating sites has been designed, synthesized and characterized successfully for the selective and sensitive recognition of Cd2+ in aqueous media. The chemosensor exhibits a remarkable increase in fluorescence intensity as well as a distinct color change upon the addition of Cd2+ over other environmentally and biologically relevant metal ions in H2O. The fluorometric response of LiBDP is attributed to the metal chelation-enhanced fluorescence (MCHEF) effect which has been confirmed by a strong association constant of 2.57 ± 1.06 × 105 M-1 and Job's plot, indicating 1 : 1 binding stoichiometry between LiBDP and Cd2+. Frontier molecular orbital analysis (obtained from DFT studies) also illustrates the turn-on fluorescence of the probe by blocking photoinduced electron transfer (PET) after coordination to Cd2+. The probe can detect Cd2+ in a competitive environment up to a submicromolar level in a biologically significant pH range. The sensor is proved to be reversible and reusable by the alternative addition of Cd2+ followed by S2-. The OFF/ON/OFF sensing behavior is utilized to construct an INHIBIT molecular logic gate based on the two inputs of Cd2+ and S2- and a fluorescence intensity at 512 nm as an output. The test paper experiment demonstrates the practical utility of LiBDP to monitor Cd2+ in an aqueous sample. Finally, the sensing probe was utilized to monitor Cd2+ in living cells.

2.
Inorg Chem ; 58(2): 1155-1166, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30614701

RESUMO

A series of heterobimetallic wire-like organometallic complexes [( tpy-C6H4-R)(PPh3)2Ru-C≡C-Fc]+ ( tpy-C6H4-R = 4'-(aryl)-2,2':6',2''-terpyridyl, Fc = [(η5-Cp)2Fe], R = -H, -Me, -F, -NMe2 in complexes 5-8, respectively) featuring ferrocenyl and 4'-(aryl)-2,2':6',2''-terpyridyl ruthenium(II) complexes as redox active metal termini, have been synthesized. Various spectroscopic tools, such as multinuclear NMR, IR spectra, HRMS, CHN analyses, and single crystal X-ray crystallography have been utilized to characterize the heterobimetallic complexes. The electrochemical and UV-vis-NIR spectroscopic studies have been investigated to evaluate the electronic delocalization across the molecular backbones of the Ru(II)-Fe(II) heterobinuclear organometallic dyads. Electrochemical studies reveal two well-separated reversible redox waves as a result of successive oxidation of the ferrocenyl and Ru(II) redox centers. The spin density distribution analyses reveal that the initial oxidation process is associated with the Fe(II)/Fe(III) couple followed by one electron oxidation of the ruthenium(II) center. The high Kc value (0.11-1.73 × 1012) and intense NIR absorption, with molar absorption coefficient (in the order of 103 M-1 cm-1) for the RuIIFeIII mixed-valence species, signify strong electronic communication between the two metal termini. The electronic coupling constant ( Hab) has been estimated to be 492 and 444 cm-1 for the structurally characterized complexes 6 and 7, respectively. The redox and NIR absorption features indicate that the mixed-valence system of the heterobinuclear dyads belongs to a Robin and Day "class II" system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...