Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Epilepsy Behav ; 150: 109572, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38070406

RESUMO

RATIONALE: Seizure induction techniques are used in the epilepsy monitoring unit (EMU) to increase diagnostic yield and reduce length of stay. There are insufficient data on the efficacy of alcohol as an induction technique. METHODS: We performed a retrospective cohort study using six years of EMU data at our institution. We compared cases who received alcohol for seizure induction to matched controls who did not. The groups were matched on the following variables: age, reason for admission, length of stay, number of antiseizure medications (ASM) at admission, whether ASMs were tapered during admission, and presence of interictal epileptiform discharges. We used both propensity score and exact matching strategies. We compared the likelihood of epileptic seizures and nonepileptic events in cases versus controls using Kaplan-Meier time-to-event analysis, as well as odds ratios for these outcomes occurring at any time during the admission. RESULTS: We analyzed 256 cases who received alcohol (median dose 2.5 standard drinks) and 256 propensity score-matched controls. Cases who received alcohol were no more likely than controls to have an epileptic seizure (X2(1) = 0.01, p = 0.93) or nonepileptic event (X2(1) = 2.1, p = 0.14) in the first 48 h after alcohol administration. For the admission overall, cases were no more likely to have an epileptic seizure (OR 0.89, 95 % CI 0.61-1.28, p = 0.58), nonepileptic event (OR 0.97, CI 0.62-1.53, p = 1.00), nor require rescue benzodiazepine (OR 0.63, CI 0.35-1.12, p = 0.15). Stratified analyses revealed no increased risk of epileptic seizure in any subgroups. Sensitivity analysis using exact matching showed that results were robust to matching strategy. CONCLUSIONS: Alcohol was not an effective induction technique in the EMU. This finding has implications for counseling patients with epilepsy about the risks of drinking alcohol in moderation in their daily lives.


Assuntos
Eletroencefalografia , Epilepsia , Humanos , Estudos Retrospectivos , Eletroencefalografia/métodos , Convulsões/psicologia , Epilepsia/complicações , Epilepsia/diagnóstico , Epilepsia/epidemiologia , Monitorização Fisiológica , Etanol/uso terapêutico
2.
J Neural Eng ; 20(4)2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37531949

RESUMO

Objective.Epilepsy is a neurological disorder characterized by recurrent seizures which vary widely in severity, from clinically silent to prolonged convulsions. Measuring severity is crucial for guiding therapy, particularly when complete control is not possible. Seizure diaries, the current standard for guiding therapy, are insensitive to the duration of events or the propagation of seizure activity across the brain. We present a quantitative seizure severity score that incorporates electroencephalography (EEG) and clinical data and demonstrate how it can guide epilepsy therapies.Approach.We collected intracranial EEG and clinical semiology data from 54 epilepsy patients who had 256 seizures during invasive, in-hospital presurgical evaluation. We applied an absolute slope algorithm to EEG recordings to identify seizing channels. From this data, we developed a seizure severity score that combines seizure duration, spread, and semiology using non-negative matrix factorization. For validation, we assessed its correlation with independent measures of epilepsy burden: seizure types, epilepsy duration, a pharmacokinetic model of medication load, and response to epilepsy surgery. We investigated the association between the seizure severity score and preictal network features.Main results.The seizure severity score augmented clinical classification by objectively delineating seizure duration and spread from recordings in available electrodes. Lower preictal medication loads were associated with higher seizure severity scores (p= 0.018, 97.5% confidence interval = [-1.242, -0.116]) and lower pre-surgical severity was associated with better surgical outcome (p= 0.042). In 85% of patients with multiple seizure types, greater preictal change from baseline was associated with higher severity.Significance.We present a quantitative measure of seizure severity that includes EEG and clinical features, validated on gold standard in-patient recordings. We provide a framework for extending our tool's utility to ambulatory EEG devices, for linking it to seizure semiology measured by wearable sensors, and as a tool to advance data-driven epilepsy care.


Assuntos
Epilepsia , Convulsões , Humanos , Convulsões/diagnóstico , Convulsões/terapia , Eletroencefalografia/métodos , Encéfalo/cirurgia , Eletrocorticografia
3.
Epilepsia ; 64(5): 1236-1247, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36815252

RESUMO

OBJECTIVE: Evaluating patients with drug-resistant epilepsy often requires inducing seizures by tapering antiseizure medications (ASMs) in the epilepsy monitoring unit (EMU). The relationship between ASM taper strategy, seizure timing, and severity remains unclear. In this study, we developed and validated a pharmacokinetic model of total ASM load and tested its association with seizure occurrence and severity in the EMU. METHODS: We studied 80 patients who underwent intracranial electroencephalographic recording for epilepsy surgery planning. We developed a first order pharmacokinetic model of the ASMs administered in the EMU to generate a continuous metric of overall ASM load. We then related modeled ASM load to seizure likelihood and severity. We determined the association between the rate of ASM load reduction, the length of hospital stay, and the probability of having a severe seizure. Finally, we used modeled ASM load to predict oncoming seizures. RESULTS: Seizures occurred in the bottom 50th percentile of sampled ASM loads across the cohort (p < .0001, Wilcoxon signed-rank test), and seizures requiring rescue therapy occurred at lower ASM loads than seizures that did not require rescue therapy (logistic regression mixed effects model, odds ratio = .27, p = .01). Greater ASM decrease early in the EMU was not associated with an increased likelihood of having a severe seizure, nor with a shorter length of stay. SIGNIFICANCE: A pharmacokinetic model can accurately estimate ASM levels for patients in the EMU. Lower modeled ASM levels are associated with increased seizure likelihood and seizure severity. We show that ASM load, rather than ASM taper speed, is associated with severe seizures. ASM modeling has the potential to help optimize taper strategy to minimize severe seizures while maximizing diagnostic yield.


Assuntos
Epilepsia Resistente a Medicamentos , Convulsões , Humanos , Convulsões/tratamento farmacológico , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Eletrocorticografia , Tempo de Internação , Modelos Logísticos
4.
J Neural Eng ; 19(5)2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36084621

RESUMO

Objective.To determine the effect of epilepsy on intracranial electroencephalography (EEG) functional connectivity, and the ability of functional connectivity to localize the seizure onset zone (SOZ), controlling for spatial biases.Approach.We analyzed intracranial EEG data from patients with drug-resistant epilepsy admitted for pre-surgical planning. We calculated intracranial EEG functional networks and determined whether changes in functional connectivity lateralized the SOZ using a spatial subsampling method to control for spatial bias. We developed a 'spatial null model' to localize the SOZ electrode using only spatial sampling information, ignoring EEG data. We compared the performance of this spatial null model against models incorporating EEG functional connectivity and interictal spike rates.Main results.About 110 patients were included in the study, although the number of patients differed across analyses. Controlling for spatial sampling, the average connectivity was lower in the SOZ region relative to the same anatomic region in the contralateral hemisphere. A model using intra-hemispheric connectivity accurately lateralized the SOZ (average accuracy 75.5%). A spatial null model incorporating spatial sampling information alone achieved moderate accuracy in classifying SOZ electrodes (mean AUC = 0.70, 95% CI 0.63-0.77). A model incorporating intracranial EEG functional connectivity and spike rate data further outperformed this spatial null model (AUC 0.78,p= 0.002 compared to spatial null model). However, a model incorporating functional connectivity without spike rate data did not significantly outperform the null model (AUC 0.72,p= 0.38).Significance.Intracranial EEG functional connectivity is reduced in the SOZ region, and interictal data predict SOZ electrode localization and laterality, however a predictive model incorporating functional connectivity without interictal spike rates did not significantly outperform a spatial null model. We propose constructing a spatial null model to provide an estimate of the pre-implant hypothesis of the SOZ, and to serve as a benchmark for further machine learning algorithms in order to avoid overestimating model performance because of electrode sampling alone.


Assuntos
Eletrocorticografia , Epilepsia , Viés , Encéfalo , Eletrocorticografia/métodos , Eletroencefalografia/métodos , Epilepsia/diagnóstico , Epilepsia/cirurgia , Humanos , Convulsões
5.
J Am Med Inform Assoc ; 29(5): 873-881, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35190834

RESUMO

OBJECTIVE: Seizure frequency and seizure freedom are among the most important outcome measures for patients with epilepsy. In this study, we aimed to automatically extract this clinical information from unstructured text in clinical notes. If successful, this could improve clinical decision-making in epilepsy patients and allow for rapid, large-scale retrospective research. MATERIALS AND METHODS: We developed a finetuning pipeline for pretrained neural models to classify patients as being seizure-free and to extract text containing their seizure frequency and date of last seizure from clinical notes. We annotated 1000 notes for use as training and testing data and determined how well 3 pretrained neural models, BERT, RoBERTa, and Bio_ClinicalBERT, could identify and extract the desired information after finetuning. RESULTS: The finetuned models (BERTFT, Bio_ClinicalBERTFT, and RoBERTaFT) achieved near-human performance when classifying patients as seizure free, with BERTFT and Bio_ClinicalBERTFT achieving accuracy scores over 80%. All 3 models also achieved human performance when extracting seizure frequency and date of last seizure, with overall F1 scores over 0.80. The best combination of models was Bio_ClinicalBERTFT for classification, and RoBERTaFT for text extraction. Most of the gains in performance due to finetuning required roughly 70 annotated notes. DISCUSSION AND CONCLUSION: Our novel machine reading approach to extracting important clinical outcomes performed at or near human performance on several tasks. This approach opens new possibilities to support clinical practice and conduct large-scale retrospective clinical research. Future studies can use our finetuning pipeline with minimal training annotations to answer new clinical questions.


Assuntos
Epilepsia , Processamento de Linguagem Natural , Registros Eletrônicos de Saúde , Humanos , Estudos Retrospectivos , Convulsões
6.
Blood ; 137(12): 1628-1640, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33512458

RESUMO

Acute erythroid leukemia (AEL) is characterized by a distinct morphology, mutational spectrum, lack of preclinical models, and poor prognosis. Here, using multiplexed genome editing of mouse hematopoietic stem and progenitor cells and transplant assays, we developed preclinical models of AEL and non-erythroid acute leukemia and describe the central role of mutational cooperativity in determining leukemia lineage. Different combination of mutations in Trp53, Bcor, Dnmt3a, Rb1, and Nfix resulted in the development of leukemia with an erythroid phenotype, accompanied by the acquisition of alterations in signaling and transcription factor genes that recapitulate human AEL by cross-species genomic analysis. Clonal expansion during tumor evolution was driven by mutational cooccurrence, with clones harboring a higher number of founder and secondary lesions (eg, mutations in signaling genes) showing greater evolutionary fitness. Mouse and human AEL exhibited deregulation of genes regulating erythroid development, notably Gata1, Klf1, and Nfe2, driven by the interaction of mutations of the epigenetic modifiers Dnmt3a and Tet2 that perturbed methylation and thus expression of lineage-specific transcription factors. The established mouse leukemias were used as a platform for drug screening. Drug sensitivity was associated with the leukemia genotype, with the poly (ADP-ribose) polymerase inhibitor talazoparib and the demethylating agent decitabine efficacious in Trp53/Bcor-mutant AEL, CDK7/9 inhibitors in Trp53/Bcor/Dnmt3a-mutant AEL, and gemcitabine and bromodomain inhibitors in NUP98-KDM5A leukemia. In conclusion, combinatorial genome editing has shown the interplay of founding and secondary genetic alterations in phenotype and clonal evolution, epigenetic regulation of lineage-specific transcription factors, and therapeutic tractability in erythroid leukemogenesis.


Assuntos
Edição de Genes , Leucemia Eritroblástica Aguda/genética , Animais , Sistemas CRISPR-Cas , Evolução Clonal , Epigênese Genética , Hematopoese , Humanos , Camundongos , Mutação , Transcriptoma
7.
Brain Sci ; 10(11)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207570

RESUMO

Cortical beta oscillations (13-30 Hz) reflect sensorimotor processing, but are not well understood in balance recovery. We hypothesized that sensorimotor cortical activity would increase under challenging balance conditions. We predicted greater beta power when balance was challenged, either by more difficult perturbations or by lower balance ability. In 19 young adults, we measured beta power over motor cortical areas (electroencephalography, Cz electrode) during three magnitudes of backward support -surface translations. Peak beta power was measured during early (50-150 ms), late (150-250 ms), and overall (0-400 ms) time bins, and wavelet-based analyses quantified the time course of evoked beta power. An ANOVA was used to compare peak beta power across perturbation magnitudes in each time bin. We further tested the association between perturbation-evoked beta power and individual balance ability measured in a challenging beam walking task. Beta power increased ~50 ms after perturbation, and to a greater extent in larger perturbations. Lower individual balance ability was associated with greater beta power in only the late (150-250 ms) time bin. These findings demonstrate greater sensorimotor cortical engagement under more challenging balance conditions, which may provide a biomarker for reduced automaticity in balance control that could be used in populations with neurological impairments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...