Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 11(4)2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29670008

RESUMO

The textural properties and surface chemistry of different activated carbons, prepared by the chemical activation of olive stones, have been investigated in order to gain insight on the NO2 adsorption mechanism. The parent chemical activated carbon was prepared by the impregnation of olive stones in phosphoric acid followed by thermal carbonization. Then, the textural properties and surface chemistry were modified by chemical treatments including nitric acid, sodium hydroxide and/or a thermal treatment at 900 °C. The main properties of the parent and modified activated carbons were analyzed by N2-adsorption, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) techniques, in order to enlighten the modifications issued from the chemical and thermal treatments. The NO2 adsorption capacities of the different activated carbons were measured in fixed bed experiments under 500 ppmv NO2 concentrations at room temperature. Temperature programmed desorption (TPD) was applied after adsorption tests in order to quantify the amount of the physisorbed and chemisorbed NO2. The obtained results showed that the development of microporosity, the presence of oxygen-free sites, and the presence of basic surface groups are key factors for the efficient adsorption of NO2.

2.
Environ Sci Pollut Res Int ; 24(11): 9993-10004, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27515525

RESUMO

A chemical-activated carbon (CAC) was prepared by phosphoric acid activation of olive stone. The CAC was characterized using various analytical techniques and evaluated for the removal of amoxicillin from aqueous solutions under different operating conditions (initial concentration, 12.5-100 mg L-1, temperature, 20-25 °C, contact time, 0-7000 min). The CAC characterization indicates that it is a microporous carbon with a specific surface area of 1174 m2/g and a pore volume of 0.46 cm3/g and contains essentially acidic functional groups. The adsorption tests indicated that 93 % of amoxicillin was removed at 20 °C for 25 mg L-1 initial concentration. Moreover, it was found that adsorption capacity increased with contact time and temperature. Kinetic study shows that the highest correlation was obtained for the pseudo-second-order kinetic model, which confirms that the process of adsorption of amoxicillin is mainly chemisorption. Using the intraparticle diffusion model, the mechanism of the adsorption process was determined. The equilibrium data analysis showed that the Sips and Langmuir models fitted well the experimental data with maximal adsorption capacities of 67.7 and 57 mg/g, respectively, at 25 °C. The chemical-activated carbon of olive stones could be considered as an efficient adsorbent for amoxicillin removal from aqueous solutions.


Assuntos
Amoxicilina , Olea , Adsorção , Carbono/química , Carvão Vegetal/química , Concentração de Íons de Hidrogênio , Cinética , Soluções , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...