Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732209

RESUMO

One of the primary complications in generating physiologically representative skin tissue is the inability to integrate vasculature into the system, which has been shown to promote the proliferation of basal keratinocytes and consequent keratinocyte differentiation, and is necessary for mimicking representative barrier function in the skin and physiological transport properties. We created a 3D vascularized human skin equivalent (VHSE) with a dermal and epidermal layer, and compared keratinocyte differentiation (immunomarker staining), epidermal thickness (H&E staining), and barrier function (transepithelial electrical resistance (TEER) and dextran permeability) to a static, organotypic avascular HSE (AHSE). The VHSE had a significantly thicker epidermal layer and increased resistance, both an indication of increased barrier function, compared to the AHSE. The inclusion of keratin in our collagen hydrogel extracellular matrix (ECM) increased keratinocyte differentiation and barrier function, indicated by greater resistance and decreased permeability. Surprisingly, however, endothelial cells grown in a collagen/keratin extracellular environment showed increased cell growth and decreased vascular permeability, indicating a more confluent and tighter vessel compared to those grown in a pure collagen environment. The development of a novel VHSE, which incorporated physiological vasculature and a unique collagen/keratin ECM, improved barrier function, vessel development, and skin structure compared to a static AHSE model.


Assuntos
Colágeno , Hidrogéis , Queratinócitos , Queratinas , Pele , Humanos , Hidrogéis/química , Colágeno/química , Colágeno/metabolismo , Queratinócitos/metabolismo , Queratinócitos/citologia , Pele/metabolismo , Pele/irrigação sanguínea , Queratinas/metabolismo , Diferenciação Celular , Proliferação de Células , Engenharia Tecidual/métodos , Matriz Extracelular/metabolismo , Células Cultivadas
2.
Bioengineering (Basel) ; 10(2)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36829759

RESUMO

This study presents a multilayer in vitro human skin platform to quantitatively relate predicted spatial time-temperature history with measured tissue injury response. This information is needed to elucidate high-temperature, short-duration burn injury kinetics and enables determination of relevant input parameters for computational models to facilitate treatment planning. Multilayer in vitro skin platforms were constructed using human dermal keratinocytes and fibroblasts embedded in collagen I hydrogels. After three seconds of contact with a 50-100 °C burn tip, ablation, cell death, apoptosis, and HSP70 expression were spatially measured using immunofluorescence confocal microscopy. Finite element modeling was performed using the measured thermal characteristics of skin platforms to determine the temperature distribution within platforms over time. The process coefficients for the Arrhenius thermal injury model describing tissue ablation and cell death were determined such that the predictions calculated from the time-temperature histories fit the experimental burn results. The activation energy for thermal collagen ablation and cell death was found to be significantly lower for short-duration, high-temperature burns than those found for long-duration, low-temperature burns. Analysis of results suggests that different injury mechanisms dominate at higher temperatures, necessitating burn research in the temperature ranges of interest and demonstrating the practicality of the proposed skin platform for this purpose.

3.
Biomacromolecules ; 24(3): 1475-1482, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36780271

RESUMO

Through the postpolymerization modification of poly(allyl glycidyl ether) (PAGE), a functionalizable polyether with a poly(ethylene oxide) backbone, we engineered a new class of highly tunable polyampholyte materials. These polyampholytes can be synthesized to have several useful properties, including low cytotoxicity and pH-responsive coacervate formation. In this study, we used PAGE-based polyampholytes (PAGE-PAs) for the cryopreservation of mammalian cell suspensions. Typically, dimethyl sulfoxide (DMSO) is the cryoprotectant used for preserving mammalian cells, but DMSO suffers from key drawbacks including toxicity and difficult post-thaw removal that motivates the development of new materials and methods. Toxicity and post-thaw survival were dependent on PAGE-PA composition with the highest immediate post-thaw survival for normal human dermal fibroblasts occurring for the least toxic PAGE-PA at a cation/anion ratio of 35:65. With low toxicity, the PAGE-PA concentration could be increased in order to increase immediate post-thaw survival of the immortalized mouse embryonic fibroblasts (NIH/3T3). While immediate post-thaw viability was achieved using only the PAGE-PAs, long-term cell survival was low, highlighting the challenges involved with the design of cryoprotective polyampholytes. An environment utilizing both PAGE-PAs and DMSO in a cryoprotective solution offered promising post-thaw viabilities exceeding 70%, with long-term metabolic activities comparable to unfrozen cells.


Assuntos
Dimetil Sulfóxido , Fibroblastos , Animais , Camundongos , Humanos , Sobrevivência Celular , Criopreservação/métodos , Poli A , Mamíferos
4.
Bioengineering (Basel) ; 9(10)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36290526

RESUMO

Keratinocytes undergo a complex process of differentiation to form the stratified stratum corneum layer of the skin. In most biomimetic skin models, a 3D hydrogel fabricated out of collagen type I is used to mimic human skin. However, native skin also contains keratin, which makes up 90% of the epidermis and is produced by the keratinocytes present. We hypothesized that the addition of keratin (KTN) in our collagen hydrogel may aid in the process of keratinocyte differentiation compared to a pure collagen hydrogel. Keratinocytes were seeded on top of a 100% collagen or 50/50 C/KTN hydrogel cultured in either calcium-free (Ca-free) or calcium+ (Ca+) media. Our study demonstrates that the addition of keratin and calcium in the media increased lysosomal activity by measuring the glucocerebrosidase (GBA) activity and lysosomal distribution length, an indication of greater keratinocyte differentiation. We also found that the presence of KTN in the hydrogel also increased the expression of involucrin, a differentiation marker, compared to a pure collagen hydrogel. We demonstrate that a combination (i.e., containing both collagen and kerateine or "C/KTN") hydrogel was able to increase keratinocyte differentiation compared to a pure collagen hydrogel, and the addition of calcium further increased the differentiation of keratinocytes. This multi-protein hydrogel shows promise in future models or treatments to increase keratinocyte differentiation into the stratum corneum.

5.
Biotechnol Bioeng ; 117(11): 3572-3590, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32648934

RESUMO

Inflammatory breast cancer (IBC), a rare form of breast cancer associated with increased angiogenesis and metastasis, is largely driven by tumor-stromal interactions with the vasculature and the extracellular matrix (ECM). However, there is currently a lack of understanding of the role these interactions play in initiation and progression of the disease. In this study, we developed the first three-dimensional, in vitro, vascularized, microfluidic IBC platform to quantify the spatial and temporal dynamics of tumor-vasculature and tumor-ECM interactions specific to IBC. Platforms consisting of collagen type 1 ECM with an endothelialized blood vessel were cultured with IBC cells, MDA-IBC3 (HER2+) or SUM149 (triple negative), and for comparison to non-IBC cells, MDA-MB-231 (triple negative). Acellular collagen platforms with endothelialized blood vessels served as controls. SUM149 and MDA-MB-231 platforms exhibited a significantly (p < .05) higher vessel permeability and decreased endothelial coverage of the vessel lumen compared to the control. Both IBC platforms, MDA-IBC3 and SUM149, expressed higher levels of vascular endothelial growth factor (p < .05) and increased collagen ECM porosity compared to non-IBCMDA-MB-231 (p < .05) and control (p < .01) platforms. Additionally, unique to the MDA-IBC3 platform, we observed progressive sprouting of the endothelium over time resulting in viable vessels with lumen. The newly sprouted vessels encircled clusters of MDA-IBC3 cells replicating a key feature of in vivo IBC. The IBC in vitro vascularized platforms introduced in this study model well-described in vivo and clinical IBC phenotypes and provide an adaptable, high throughput tool for systematically and quantitatively investigating tumor-stromal mechanisms and dynamics of tumor progression.


Assuntos
Matriz Extracelular , Neoplasias Inflamatórias Mamárias , Técnicas de Cultura de Células em Três Dimensões , Linhagem Celular Tumoral , Colágeno/metabolismo , Citocinas/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Humanos , Neoplasias Inflamatórias Mamárias/irrigação sanguínea , Neoplasias Inflamatórias Mamárias/patologia , Junções Intercelulares/metabolismo , Neovascularização Patológica/patologia
6.
Biotechnol Bioeng ; 116(5): 1201-1219, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30636289

RESUMO

This paper presents the development of a vascularized breast tumor and healthy or tumorigenic liver microenvironments-on-a-chip connected in series. This is the first description of a vascularized multi tissue-on-a-chip microenvironment for modeling cancerous breast and cancerous/healthy liver microenvironments, to allow for the study of dynamic and spatial transport of particles. This device enables the dynamic determination of vessel permeability, the measurement of drug and nanoparticle transport, and the assessment of the associated efficacy and toxicity to the liver. The platform is utilized to determine the effect of particle size on the spatiotemporal diffusion of particles through each microenvironment, both independently and in response to the circulation of particles in varying sequences of microenvironments. The results show that when breast cancer cells were cultured in the microenvironments they had a 2.62-fold higher vessel porosity relative to vessels within healthy liver microenvironments. Hence, the permeability of the tumor microenvironment increased by 2.35- and 2.77-fold compared with a healthy liver for small and large particles, respectively. The extracellular matrix accumulation rate of larger particles was 2.57-fold lower than smaller particles in a healthy liver. However, the accumulation rate was 5.57-fold greater in the breast tumor microenvironment. These results are in agreement with comparable in vivo studies. Ultimately, the platform could be utilized to determine the impact of the tissue or tumor microenvironment, or drug and nanoparticle properties, on transport, efficacy, selectivity, and toxicity in a dynamic, and high-throughput manner for use in treatment optimization.


Assuntos
Neoplasias da Mama/metabolismo , Dispositivos Lab-On-A-Chip , Neoplasias Hepáticas/metabolismo , Nanopartículas/química , Neovascularização Patológica/metabolismo , Microambiente Tumoral , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Matriz Extracelular/química , Feminino , Humanos , Neoplasias Hepáticas/irrigação sanguínea , Neoplasias Hepáticas/patologia , Neovascularização Patológica/patologia , Tamanho da Partícula
7.
J Phys Chem B ; 122(21): 5599-5609, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29510047

RESUMO

We present an atomistic level computational investigation of the dynamics of a signaling protein, monocyte chemoattractant protein-1 (MCP-1), that explores how simulation geometry and solution ionic strength affect the calculated diffusion coefficient. Using a simple extension of noncubic finite size diffusion correction expressions, it is possible to calculate experimentally comparable diffusion coefficients that are fully consistent with those determined from cubic box simulations. Additionally, increasing the concentration of salt in the solvent environment leads to changes in protein dynamics that are not explainable through changes in solvent viscosity alone. This work in accurate computational determination of protein diffusion coefficients led us to investigate molecular-weight-based predictors for biomolecular diffusion. By introducing protein volume- and protein surface-area-based extensions of traditional statistical relations connecting particle molecular weight to diffusion, we find that protein solvent-excluded surface area rather than volume works as a better geometric property for estimating biomolecule Stokes radii. This work highlights the considerations necessary for accurate computational determination of biomolecule diffusivity and presents insight into molecular weight relations for diffusion that could lead to new routes for estimating protein diffusion beyond the traditional approaches.


Assuntos
Quimiocina CCL2/química , Quimiocina CCL2/metabolismo , Difusão , Simulação de Dinâmica Molecular , Concentração Osmolar , Cloreto de Sódio/química , Solventes/química , Temperatura , Viscosidade
8.
Int J Biol Macromol ; 97: 141-147, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28041913

RESUMO

Monocyte transendothelial migration is a multi-step process critical for the initiation and development of atherosclerosis. The chemokine monocyte chemoattractant protein-1 (MCP-1) is overexpressed during atheroma and its concentration gradients in the extracellular matrix (ECM) is critical for the transendothelial recruitment of monocytes. Based on prior observations, we hypothesize that both free and bound gradients of MCP-1 within the ECM are involved in directing monocyte migration. The interaction between a three-dimensional (3D), cell-free, collagen matrix and MCP-1; and its effect on monocyte migration was measured in this study. Our results showed such an interaction existed between MCP-1 and collagen, as 26% of the total MCP-1 added to the collagen matrix was bound to the matrix after extensive washes. We also characterized the collagen-MCP-1 interaction using biophysical techniques. The treatment of the collagen matrix with MCP-1 lead to increased monocyte migration, and this phenotype was abrogated by treating the matrix with an anti-MCP-1 antibody. Thus, our results indicate a binding interaction between MCP-1 and the collagen matrix, which could elicit a haptotactic effect on monocyte migration. A better understanding of such mechanisms controlling monocyte migration will help identify target cytokines and lead to the development of better anti-inflammatory therapeutic strategies.


Assuntos
Movimento Celular , Quimiocina CCL2/metabolismo , Colágeno/metabolismo , Modelos Biológicos , Monócitos/patologia , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Adesão Celular , Matriz Extracelular/metabolismo , Humanos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...