Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Commun Signal ; 18(1): e12015, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38545255

RESUMO

Persistent activation of hepatic stellate cells (HSCs) in the injured liver leads to the progression of liver injury from fibrosis to detrimental cirrhosis. In a previous study, we have shown that survivin protein is upregulated during the early activation of HSCs, which triggers the onset of liver fibrosis. However, the therapeutic potential of targeting survivin in a fully established fibrotic liver needs to be investigated. In this study, we chemically induced hepatic fibrosis in mice using carbon tetrachloride (CCl4) for 6 weeks, which was followed by treatment with a survivin suppressant (YM155). We also evaluated survivin expression in fibrotic human liver tissues, primary HSCs, and HSC cell line by histological analysis. αSMA+ HSCs in human and mice fibrotic liver tissues showed enhanced survivin expression, whereas the hepatocytes and quiescent (qHSCs) displayed minimal expression. Alternatively, activated M2 macrophage subtype induced survivin expression in HSCs through the TGF-ß-TGF-ß receptor-I/II signaling. Inhibition of survivin in HSCs promoted cell cycle arrest and senescence, which eventually suppressed their activation. In vivo, YM155 treatment increased the expression of cell senescence makers in HSCs around fibrotic septa such as p53, p21, and ß-galactosidase. YM155 treatment in vivo also reduced the hepatic macrophage population and inflammatory cytokine expression in the liver. In conclusion, downregulation of survivin in the fibrotic liver decreases HSC activation by inducing cellular senescence and modulating macrophage cytokine expression that collectively ameliorates liver fibrosis.

2.
Genomics ; 115(4): 110642, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37209778

RESUMO

Identification of genes dysregulated during the hepatitis B virus (HBV)-host cell interaction adds to the understanding of underlying molecular mechanisms and aids in discovering effective therapies to improve prognosis in hepatitis B virus (HBV)-infected individuals. Through bioinformatics analyses of transcriptomics data, this study aimed to identify potential genes involved in the cross-talk of human hepatocytes expressing the HBV viral protein HBx with endothelial cells. Transient transfection of HBV viral gene X (HBx) was performed in THLE2 cells using pcDNA3 constructs. Through mRNA Sequencing (RNA Seq) analysis, differentially expressed genes (DEGs) were identified. THLE2 cells transfected with HBx (THLE2x) were further treated with conditioned medium from cultured human umbilical vein derived endothelial cells (HUVEC-CM). Gene Ontology (GO) enrichment analysis revealed that interferon and cytokine signaling pathways were primarily enriched for the downregulated DEGs in THLE2x cells treated with HUVEC-CM. One significant module was selected following protein-protein interaction (PPI) network generation, and thirteen hub genes were identified from the module. The prognostic values of the hub genes were evaluated using Kaplan-Meier (KM) plotter, and three genes (IRF7, IFIT1, and IFITM1) correlated with poor disease specific survival (DSS) in HCC patients with chronic hepatitis. A comparison of the DEGs identified in HUVEC-stimulated THLE2x cells with four publicly available HBV-related HCC microarray datasets revealed that PLAC8 was consistently downregulated in all four HCC datasets as well as in HUVEC-CM treated THLE2x cells. KM plots revealed that PLAC8 correlated with worse relapse free survival and progression free survival in HCC patients with hepatitis B virus infection. This study provided molecular insights which may help develop a deeper understanding of HBV-host stromal cell interaction and open avenues for future research.


Assuntos
Carcinoma Hepatocelular , Hepatite B , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Transcriptoma , Neoplasias Hepáticas/metabolismo , Células Endoteliais/metabolismo , Recidiva Local de Neoplasia , Hepatócitos/metabolismo , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Proteínas/genética
3.
Mol Biol Rep ; 50(3): 2107-2117, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36542236

RESUMO

BACKGROUND: Tumor necrosis factor-α (TNFα) is a pleiotropic cytokine involved in nuclear factor kappa B (NF-κB) mediated cell survival as well as cell death. High serum TNFα levels correlate with liver fibrosis and enhance hepatic stellate cell (HSC) viability. However, the regulatory role of cellular inhibitor of apoptosis-1/2 (cIAP1/2) during TNFα induced NF-κB signaling in activated HSCs is largely unknown. METHOD AND RESULTS: Activated HSCs were treated with cIAP1/2 inhbitiors i.e., SMAC mimetic BV6, and Birinapant in the presence of TNFα and macrophage conditioned media. TNFα cytokine increased cIAP2 expression and enhanced cell viability through the canonical NF-κB signaling in activated HSCs. cIAP2 inhibition via BV6 decreased the TNFα induced canonical NF-κB signaling, and reduced cell viability in activated HSCs. SMAC mimetic, Birinapant alone did not affect the cell viability but treatment of TNFα sensitized HSCs with Birinapant induced cell death. While BV6 mediated cIAP2 ablation was able to decrease the TNFα induced canonical NF-κB signaling, this effect was not observed with Birinapant treatment. Secreted TNFα from M1 polarized macrophages sensitized activated HSCs to BV6 or Birinapant mediated cell death. However, M2 polarized macrophage conditioned medium rescued the activated HSCs from BV6 mediated cytotoxicity. CONCLUSION: In this study, we describe the regulatory role of cIAP2 in TNFα induced NF-κB signaling in activated HSCs. Targeting cIAP2 may be a promising approach for liver fibrosis treatment via modulating NF-κB signaling in activated HSCs.


Assuntos
NF-kappa B , Fator de Necrose Tumoral alfa , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Sobrevivência Celular , Células Estreladas do Fígado/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Linhagem Celular Tumoral , Citocinas , Apoptose , Proteínas Mitocondriais/metabolismo
4.
Cancer Cell Int ; 22(1): 416, 2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36567312

RESUMO

The tumor suppressor p53 when undergoes amyloid formation confers several gain-of-function (GOF) activities that affect molecular pathways crucial for tumorigenesis and progression like some of the p53 mutants. Even after successful cancer treatment, metastasis and recurrence can result in poor survival rates. The major cause of recurrence is mainly the remnant cancer cells with stem cell-like properties, which are resistant to any chemotherapy treatment. Several studies have demonstrated the role of p53 mutants in exacerbating cancer stemness properties and epithelial-mesenchymal transition in these remnant cancer cells. Analyzing the amyloid/mutant p53-mediated signaling pathways that trigger metastasis, relapse or chemoresistance may be helpful for the development of novel or improved individualized treatment plans. In this review, we discuss the changes in the metabolic pathways such as mevalonate pathway and different signaling pathways such as TGF-ß, PI3K/AKT/mTOR, NF-κB and Wnt due to p53 amyloid formation, or mutation. In addition to this, we have discussed the role of the regulatory microRNAs and lncRNAs linked with the mutant or amyloid p53 in human malignancies. Such changes promote tumor spread, potential recurrence, and stemness. Importantly, this review discusses the cancer therapies that target either mutant or amyloid p53, restore wild-type functions, and exploit the synthetic lethal interactions with mutant p53.

5.
Molecules ; 27(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36014345

RESUMO

An ancient saffron-based polyherbal formulation, Dawa-ul-Kurkum (DuK), has been used to treat liver ailments and other diseases and was recently evaluated for its anticancer potential against hepatocellular carcinoma (HCC) by our research team. To gain further insight into the lead molecule of DuK, we selected ten active constituents belonging to its seven herbal constituents (crocin, crocetin, safranal, jatamansone, isovaleric acid, cinnamaldehyde, coumaric acid, citral, guggulsterone and dehydrocostus lactone). We docked them with 32 prominent proteins that play important roles in the development, progression and suppression of HCC and those involved in endoplasmic reticulum (ER) stress to identify the binding interactions between them. Three reference drugs for HCC (sorafenib, regorafenib, and nivolumab) were also examined for comparison. The in silico studies revealed that, out of the ten compounds, three of them-viz., Z-guggulsterone, dehydrocostus lactone and crocin-showed good binding efficiency with the HCC and ER stress proteins. Comparison of binding affinity with standard drugs was followed by preliminary in vitro screening of these selected compounds in human liver cancer cell lines. The results provided the basis for selecting Z-guggulsterone as the best-acting phytoconstituent amongst the 10 studied. Further validation of the binding efficiency of Z-guggulsterone was undertaking using molecular dynamics (MD) simulation studies. The effects of Z-guggulsterone on clone formation and cell cycle progression were also assessed. The anti-oxidant potential of Z-guggulsterone was analyzed through DPPH and FRAP assays. qRTPCR was utilized to check the results at the in vitro level. These results indicate that Z-guggulsterone should be considered as the main constituent of DuK instead of the crocin in saffron, as previously hypothesized.


Assuntos
Carcinoma Hepatocelular , Crocus , Neoplasias Hepáticas , Pregnenodionas , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/patologia , Pregnenodionas/farmacologia
6.
Microvasc Res ; 142: 104374, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35523268

RESUMO

BACKGROUND: During the progression of hepatocellular carcinoma (HCC), several angiogenic factors are overexpressed in the hepatic microenvironment, which play a critical role in governing the phenotype of the endothelial cells. Mutation in the p53 gene (TP53) is a common event in HCC that may dysregulate the angiogenic signals. However, their functional messages remain largely unexplored at the onset of metastasis. METHODS: Role of p53 was studied by siRNA mediated silencing of p53 in HepG2 cells (WTp53), collecting and analyzing their conditioned medium, followed by indirect co-culture with endothelial cells (HUVECs). Gene and protein expression in HCC cells and endothelial cells was studied by RT-qPCR and western blotting respectively. ß-catenin protein expression and localization were analyzed by immunocytochemistry. RESULTS: We have studied a cell-to-cell interaction model to investigate the crosstalk of endothelial and hepatoma cells by either knocking down p53 or by using p53 null low metastatic HCC cell line. In the absence of p53, the HCC cells influence the migration and vascular network formation of endothelial cells through paracrine signaling of VEGF. Secretory VEGF activated the VEGF receptor-2 along with the survival signaling in endothelial cells. However, the ß-catenin signal is upregulated in endothelial cells only during interaction with metastatic set up irrespective of absence and presence of p53, indicating context-dependent participation of p53 during communication between hepatoma cells and endothelial cells. CONCLUSION: This study highlights that the role of p53 on cellular responses during interaction of hepatocellular carcinoma and endothelial cells is distinct to cell types and context.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Regulação Neoplásica da Expressão Gênica , Genes p53 , Humanos , Neoplasias Hepáticas/metabolismo , Microambiente Tumoral , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Life Sci ; 287: 120119, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34743004

RESUMO

AIM: Hepatic fibrosis in injured liver is characterized by the activation of hepatic stellate cells (HSCs) from their quiescent state. Survivin (BIRC5) is one of the key genes that are upregulated during activation of HSCs but their role in HSC activation and fibrosis progression is unknown. Here, we have investigated the role of survivin protein in early fibrogenic activation of HSCs and fibrosis progression in chronic liver injury. MATERIALS & METHODS: Primary quiescent HSCs were isolated from healthy mice liver through perfusion and cultured for fibrogenic activation. Survivin expression was suppressed by its pharmacological suppressant, YM155. We developed chronic liver injury induced fibrotic mice model through administrating repeated dose of CCl4 for 2 weeks and 4 weeks. Mice were pre-treated with YM155 a week before CCl4 administration till 2nd week of dosing and then discontinued. Hepatic parameters were characterized and underlying mechanisms were investigated. KEY FINDINGS: Survivin expression gradually increased along with the expression of αSMA, collagen I activation maker in HSCs during their activation from quiescent state. Survivin suppression through YM155 downregulated αSMA, collagen I. Pre-treatment of YM155 in mice ceased the early activation of HSCs and onset of fibrosis in injured liver. However, discontinuation of YM155 initiated the activation of HSCs and fibrosis progression that shows survivin expression in HSCs is essential for their early activation and onset of liver fibrosis. SIGNIFICANCE: Survivin expression induces with activation of HSCs and drives onset of liver fibrosis in injured liver. Targeting survivin protein in activated HSCs could be a potential anti-fibrotic therapeutic approach in chronic liver injury.


Assuntos
Progressão da Doença , Doença Hepática Terminal/metabolismo , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/metabolismo , Survivina/biossíntese , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Doença Hepática Terminal/genética , Doença Hepática Terminal/patologia , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/patologia , Imidazóis/farmacologia , Cirrose Hepática/genética , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Naftoquinonas/farmacologia , Survivina/antagonistas & inibidores , Survivina/genética
8.
Sci Rep ; 11(1): 3089, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542321

RESUMO

The activated hepatic stellate cells (HSCs) are the major cells that secrete the ECM proteins and drive the pathogenesis of fibrosis in chronic liver disease. Targeting of HSCs by modulating their activation and proliferation has emerged as a promising approach in the development of anti-fibrotic therapy. Sorafenib, a multi-kinase inhibitor has shown anti-fibrotic properties by inhibiting the survival and proliferation of HSCs. In present study we investigated sorafenib induced cytoplasmic vacuolation mediated decreased cell viability of HSCs in dose and time dependent manner. In this circumstance, sorafenib induces ROS and ER stress in HSCs without involvement of autophagic signals. The protein synthesis inhibitor cycloheximide treatment significantly decreased the sorafenib-induced cytoplasmic vacuolation with increasing cell viability. Antioxidant human serum albumin influences the viability of HSCs by reducing sorafenib induced vacuolation and cell death. However, neither caspase inhibitor Z-VAD-FMK nor autophagy inhibitor chloroquine could rescue the HSCs from sorafenib-induced cytoplasmic vacuolation and cell death. Using TEM and ER organelle tracker, we conclude that the cytoplasmic vacuoles are due to ER dilation. Sorafenib treatment induces calreticulin and GPR78, and activates IRE1α-XBP1s axis of UPR pathway, which eventually trigger the non-apoptotic cell death in HSCs. This study provides a notable mechanistic insight into the ER stress directed non-apoptotic cell death with future directions for the development of efficient anti-fibrotic therapeutic strategies.


Assuntos
Cirrose Hepática/tratamento farmacológico , Hepatopatias/tratamento farmacológico , Sorafenibe/farmacologia , Vacúolos/genética , Calreticulina/genética , Inibidores de Caspase/farmacologia , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citoplasma/efeitos dos fármacos , Citoplasma/genética , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/genética , Proteínas de Choque Térmico/genética , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/patologia , Humanos , Cirrose Hepática/genética , Cirrose Hepática/patologia , Hepatopatias/genética , Hepatopatias/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Vacúolos/efeitos dos fármacos , Vacúolos/patologia , Proteína 1 de Ligação a X-Box/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...