Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 450: 131039, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36867909

RESUMO

Natural and anthropogenic causes are continually growing sources of metals in the ecosystem; hence, heavy metal (HM) accumulation has become a primary environmental concern. HM contamination poses a serious threat to plants. A major focus of global research has been to develop cost-effective and proficient phytoremediation technologies to rehabilitate HM-contaminated soil. In this regard, there is a need for insights into the mechanisms associated with the accumulation and tolerance of HMs in plants. It has been recently suggested that plant root architecture has a critical role in the processes that determine sensitivity or tolerance to HMs stress. Several plant species, including those from aquatic habitats, are considered good hyperaccumulators for HM cleanup. Several transporters, such as the ABC transporter family, NRAMP, HMA, and metal tolerance proteins, are involved in the metal acquisition mechanisms. Omics tools have shown that HM stress regulates several genes, stress metabolites or small molecules, microRNAs, and phytohormones to promote tolerance to HM stress and for efficient regulation of metabolic pathways for survival. This review presents a mechanistic view of HM uptake, translocation, and detoxification. Sustainable plant-based solutions may provide essential and economical means of mitigating HM toxicity.


Assuntos
Metais Pesados , Poluentes do Solo , Ecossistema , Poluentes do Solo/metabolismo , Plantas/metabolismo , Metais Pesados/análise , Biodegradação Ambiental , Solo
2.
Antioxidants (Basel) ; 11(8)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36009349

RESUMO

Selenium (Se) is an essential micro-element for many organisms, including Chlamydomonas reinhardtii, and is required in trace amounts. It is obtained from the 21st amino acid selenocysteine (Sec, U), genetically encoded by the UGA codon. Proteins containing Sec are known as selenoproteins. In eukaryotes, selenoproteins are present in animals and algae, whereas fungi and higher plants lack them. The human genome contains 25 selenoproteins, most of which are involved in antioxidant defense activity, redox regulation, and redox signaling. In algae, 42 selenoprotein families were identified using various bioinformatics approaches, out of which C. reinhardtii is known to have 10 selenoprotein genes. However, the role of selenoproteins in Chlamydomonas is yet to be reported. Chlamydomonas selenoproteins contain conserved domains such as CVNVGC and GCUG, in the case of thioredoxin reductase, and CXXU in other selenoproteins. Interestingly, Sec amino acid residue is present in a catalytically active domain in Chlamydomonas selenoproteins, similar to human selenoproteins. Based on catalytical active sites and conserved domains present in Chlamydomonas selenoproteins, we suggest that Chlamydomonas selenoproteins could have a role in redox regulation and defense by acting as antioxidants in various physiological conditions.

3.
Sci Rep ; 12(1): 7979, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562398

RESUMO

Banana is an important fruit crop in the tropics and subtropics; however, limited information on biomarkers and signature volatiles is available for selecting commercial cultivars. Clonal fidelity is a major contributor to banana yield and aroma; however, there are no useful biomarkers available to validate clonal fidelity. In this study, we performed the molecular profiling of 20 banana cultivars consisting of diploid (AA or AB) and triploid (AAA or AAB or ABB) genomic groups. We screened 200 molecular markers, of which 34 markers (11 RAPD, 11 ISSR, and 12 SSR) yielded unequivocally scorable biomarker profiles. About 75, 69, and 24 allelic loci per marker were detected for RAPD, ISSR, and SSR markers, respectively. The statistical analysis of molecular variance (AMOVA) exhibited a high genetic difference of 77% with a significant FST value of 0.23 (p < 0.001). Interestingly, the UBC-858 and SSR CNMPF-13 markers were unique to Grand Nain and Ardhapuri cultivars, respectively, which could be used for clonal fidelity analysis. Furthermore, the analysis of banana fruit volatilome using headspace solid-phase microextraction-gas chromatography-tandem mass spectrometry (HS-SPME-GCMS) revealed a total of fifty-four volatile compounds in nine banana cultivars with 56% of the total volatile compounds belonging to the ester group as the significant contributor of aroma. The study assumes significance with informative biomarkers and signature volatiles which could be helpful in breeding and for the authentic identification of commercial banana cultivars.


Assuntos
Musa , Compostos Orgânicos Voláteis , Biomarcadores , Cromatografia Gasosa-Espectrometria de Massas/métodos , Variação Genética , Musa/química , Musa/genética , Melhoramento Vegetal , Técnica de Amplificação ao Acaso de DNA Polimórfico , Compostos Orgânicos Voláteis/análise
4.
Int J Mol Sci ; 22(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066274

RESUMO

Polyamines are ubiquitous, low-molecular-weight aliphatic compounds, present in living organisms and essential for cell growth and differentiation. Copper amine oxidases (CuAOs) oxidize polyamines to aminoaldehydes releasing ammonium and hydrogen peroxide, which participates in the complex network of reactive oxygen species acting as signaling molecules involved in responses to biotic and abiotic stresses. CuAOs have been identified and characterized in different plant species, but the most extensive study on a CuAO gene family has been carried out in Arabidopsis thaliana. Growing attention has been devoted in the last years to the investigation of the CuAO expression pattern during development and in response to an array of stress and stress-related hormones, events in which recent studies have highlighted CuAOs to play a key role by modulation of a multilevel phenotypic plasticity expression. In this review, the attention will be focused on the involvement of different AtCuAOs in the IAA/JA/ABA signal transduction pathways which mediate stress-induced phenotypic plasticity events.


Assuntos
Adaptação Fisiológica , Amina Oxidase (contendo Cobre)/metabolismo , Regulação da Expressão Gênica de Plantas , Hormônios/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plantas/enzimologia , Estresse Fisiológico , Plantas/imunologia , Plantas/metabolismo
5.
Int J Mol Sci ; 21(20)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096855

RESUMO

Polyamines (PAs) are essential metabolites in plants performing multiple functions during growth and development. Copper-containing amine oxidases (CuAOs) catalyse the catabolism of PAs and in Arabidopsis thaliana are encoded by a gene family. Two mutants of one gene family member, AtCuAOδ, showed delayed seed germination, leaf emergence, and flowering time. The height of the primary inflorescence shoot was reduced, and developmental leaf senescence was delayed. Siliques were significantly longer in mutant lines and contained more seeds. The phenotype of AtCuAOδ over-expressors was less affected. Before flowering, there was a significant increase in putrescine in AtCuAOδ mutant leaves compared to wild type (WT), while after flowering both spermidine and spermine concentrations were significantly higher than in WT leaves. The expression of GA (gibberellic acid) biosynthetic genes was repressed and the content of GA1, GA7, GA8, GA9, and GA20 was reduced in the mutants. The inhibitor of copper-containing amine oxidases, aminoguanidine hydrochloride, mimicked the effect of AtCuAOδ mutation on WT seed germination. Delayed germination, reduced shoot height, and delayed flowering in the mutants were rescued by GA3 treatment. These data strongly suggest AtCuAOδ is an important gene regulating PA homeostasis, and that a perturbation of PAs affects plant development through a reduction in GA biosynthesis.


Assuntos
Amina Oxidase (contendo Cobre)/genética , Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Giberelinas/metabolismo , Poliaminas/metabolismo , Amina Oxidase (contendo Cobre)/antagonistas & inibidores , Amina Oxidase (contendo Cobre)/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Germinação , Giberelinas/farmacologia , Ácidos Indolacéticos/metabolismo , Mutação , Folhas de Planta/fisiologia , Plantas Geneticamente Modificadas , Sementes/genética , Sementes/crescimento & desenvolvimento
6.
Plant Physiol Biochem ; 147: 141-160, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31862580

RESUMO

Copper-containing amine oxidases (CuAOs) catalyze polyamines (PAs) terminal oxidation producing ammonium, an aminoaldehyde and hydrogen peroxide (H2O2). Plant CuAOs are induced by stress-related hormones, methyl-jasmonate (MeJA), abscisic acid (ABA) and salicylic acid (SA). In the Arabidopsis genome, eight genes encoding CuAOs have been identified. Here, a comprehensive investigation of the expression pattern of four genes encoding AtCuAOs from the α and γ phylogenetic subfamilies, the two peroxisomal AtCuAOα2 (At1g31690) and AtCuAOα3 (At1g31710) and the two apoplastic AtCuAOγ1 (At1g62810) and AtCuAOγ2 (At3g43670), has been carried out by RT-qPCR and promoter::green fluorescent protein-ß-glucuronidase fusion (GFP-GUS). Expression in hydathodes of new emerging leaves (AtCuAOγ1 and AtCuAOγ2) and/or cotyledons (AtCuAOα2, AtCuAOγ1 and AtCuAOγ2) as well as in vascular tissues of new emerging leaves and in cortical root cells at the division/elongation transition zone (AtCuAOγ1), columella cells (AtCuAOγ2) or hypocotyl and root (AtCuAOα3) was identified. Quantitative and tissue-specific gene expression analysis performed by RT-qPCR and GUS-staining in 5- and 7-day-old seedlings under stress conditions or after treatments with hormones or PAs, revealed that all four AtCuAOs were induced during dehydration recovery, wounding, treatment with indoleacetic acid (IAA) and putrescine (Put). AtCuAOα2, AtCuAOα3, AtCuAOγ1 and AtCuAOγ2 expression in vascular tissues and hydathodes involved in water supply and/or loss, along with a dehydration-recovery dependent gene expression, would suggest a role in water balance homeostasis. Moreover, occurrence in zones where an auxin maximum has been observed along with an IAA-induced alteration of expression profiles, support a role in tissue maturation and xylem differentiation events.


Assuntos
Amina Oxidase (contendo Cobre) , Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico , Amina Oxidase (contendo Cobre)/genética , Amina Oxidase (contendo Cobre)/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Filogenia , Reguladores de Crescimento de Plantas/farmacologia , Plantas Geneticamente Modificadas , Putrescina/farmacologia , Estresse Fisiológico/genética
7.
BMC Genomics ; 20(1): 786, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664916

RESUMO

BACKGROUND: The plant-specific TCP transcription factors play different functions in multiple processes of plant growth and development. TCP family genes have been identified in several plant species, but no comprehensive analysis of the TCP family in grapevine has been undertaken to date, especially their roles in fruit development. RESULTS: A total of 18 non-redundant grapevine TCP (VvTCP) genes distributing on 11 chromosomes were identified. Phylogenetic and structural analysis showed that VvTCP genes were divided into two main classes - class I and class II. The Class II genes were further classified into two subclasses, the CIN subclass and the CYC/TB1 subclass. Segmental duplication was a predominant duplication event which caused the expansion of VvTCP genes. The cis-acting elements analysis and tissue-specific expression patterns of VvTCP genes demonstrated that these VvTCP genes might play important roles in plant growth and development. Expression patterns of VvTCP genes during fruit development and ripening were analyzed by RNA-Seq and qRT-PCR. Among them, 11 VvTCP genes were down-regulated during different fruit developmental stages, while only one VvTCP genes were up-regulated, suggesting that most VvTCP genes were probably related to early development in grapevine fruit. Futhermore, the expression of most VvTCP genes can be inhibited by drought and waterlogging stresses. CONCLUSIONS: Our study establishes the first genome-wide analysis of the grapevine TCP gene family and provides valuable information for understanding the classification and functions of the TCP genes in grapevine.


Assuntos
Proteínas de Plantas/genética , Fatores de Transcrição/genética , Vitis/genética , Motivos de Aminoácidos , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Genoma de Planta , Família Multigênica , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Estresse Fisiológico/genética , Sintenia , Fatores de Transcrição/química , Fatores de Transcrição/classificação , Fatores de Transcrição/metabolismo , Transcriptoma , Vitis/crescimento & desenvolvimento , Vitis/metabolismo
8.
Plants (Basel) ; 8(6)2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31226798

RESUMO

Plant copper amine oxidases (CuAOs) are involved in wound healing, defense against pathogens, methyl-jasmonate-induced protoxylem differentiation, and abscisic acid (ABA)-induced stomatal closure. In the present study, we investigated the role of the Arabidopsis thaliana CuAOδ (AtCuAOδ; At4g12290) in the ABA-mediated stomatal closure by genetic and pharmacological approaches. Obtained data show that AtCuAOδ is up-regulated by ABA and that two Atcuaoδ T-DNA insertional mutants are less responsive to this hormone, showing reduced ABA-mediated stomatal closure and H2O2 accumulation in guard cells as compared to the wild-type (WT) plants. Furthermore, CuAO inhibitors, as well as the hydrogen peroxide (H2O2) scavenger N,N1-dimethylthiourea, reversed most of the ABA-induced stomatal closure in WT plants. Consistently, AtCuAOδ over-expressing transgenic plants display a constitutively increased stomatal closure and increased H2O2 production compared to WT plants. Our data suggest that AtCuAOδ is involved in the H2O2 production related to ABA-induced stomatal closure.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 212: 388-395, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30703662

RESUMO

G-quadruplexes are well-known DNA secondary structures which can be formed both within the DNA and the RNA sequences of the human genome. While many functions of G-quadruplex during cell regulatory events are still unknown, a number of reports have established their role in finding new cancer therapies. In this report, we provide a detailed account of Thioflavin T (ThT) interacting with a promoter gene (c-Myc) which has relevance in several types of human cancers. Using a variety of spectroscopic techniques, we have shown that the binding of ThT is selective to c-Myc G-quadruplex only, having poor interactions with the duplex DNA sequences. UV-Visible titration experiments show that binding involves stacking interactions which were further corroborated by CD experiments. Fluorescence studies showed that the binding of ThT to c-Myc G-quadruplex results in a large increase in the fluorescence emission spectrum of c-Myc G-quadruplex while the same to duplex DNAs was much poor. Binding of ThT to c-Myc G-quadruplex results in thermal stabilization of the quadruplex DNA by up to 7.4 °C and Job plot experiments demonstrated the presence of 1:1 and 2:1 ligand to quadruplex complexes. Finally, the docking study suggested that ThT stacks with the guanine bases in one of the grooves which is in agreement with the CD studies. These results are expected to provide leads into the design of new ThT analogs and derivatives for enhancing the stability and selectivity of new G-quadruplex targeting ligands.


Assuntos
Benzotiazóis/metabolismo , DNA/química , Quadruplex G , Proteínas Proto-Oncogênicas c-myc/genética , Análise Espectral/métodos , Dicroísmo Circular , Humanos , Simulação de Acoplamento Molecular , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Telômero/metabolismo , Temperatura
10.
J Proteomics ; 137: 3-18, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-26571091

RESUMO

Space is a hostile environment characterized by high vacuum, extreme temperatures, meteoroids, space debris, ionospheric plasma, microgravity and space radiation, which all represent risks for human health. A deep understanding of the biological consequences of exposure to the space environment is required to design efficient countermeasures to minimize their negative impact on human health. Recently, proteomic approaches have received a significant amount of attention in the effort to further study microgravity-induced physiological changes. In this review, we summarize the current knowledge about the effects of microgravity on microorganisms (in particular Cupriavidus metallidurans CH34, Bacillus cereus and Rhodospirillum rubrum S1H), plants (whole plants, organs, and cell cultures), mammalian cells (endothelial cells, bone cells, chondrocytes, muscle cells, thyroid cancer cells, immune system cells) and animals (invertebrates, vertebrates and mammals). Herein, we describe their proteome's response to microgravity, focusing on proteomic discoveries and their future potential applications in space research. BIOLOGICAL SIGNIFICANCE: Space experiments and operational flight experience have identified detrimental effects on human health and performance because of exposure to weightlessness, even when currently available countermeasures are implemented. Many experimental tools and methods have been developed to study microgravity induced physiological changes. Recently, genomic and proteomic approaches have received a significant amount of attention. This review summarizes the recent research studies of the proteome response to microgravity inmicroorganisms, plants, mammalians cells and animals. Current proteomic tools allow large-scale, high-throughput analyses for the detection, identification, and functional investigation of all proteomes. Understanding gene and/or protein expression is the key to unlocking the mechanisms behind microgravity-induced problems and to finding effective countermeasures to spaceflight-induced alterations but also for the study of diseases on earth. Future perspectives are also highlighted.


Assuntos
Proteoma/metabolismo , Voo Espacial , Ausência de Peso , Animais , Humanos
11.
Plant Signal Behav ; 10(10): e1073872, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26241131

RESUMO

Copper amine oxidases oxidize the polyamine putrescine to 4-aminobutanal with the production of the plant signal molecule hydrogen peroxide (H2O2) and ammonia. The Arabidopsis (Arabidopsis thaliana) gene At4g14940 (AtAO1, previously referred to as ATAO1) encodes an apoplastic copper amine oxidase expressed in lateral root cap cells and developing xylem, especially in root protoxylem and metaxylem precursors. In our recent study, we demonstrated that AtAO1 expression is strongly induced in the root vascular tissues by the wound-signal hormone methyl jasmonate (MeJA). Furthermore, we also demonstrated that the H2O2 derived by the AtAO1-driven oxidation of putrescine, mediates the MeJA-induced early protoxylem differentiation in Arabidopsis roots. H2O2 may contribute to protoxylem differentiation by signaling developmental cell death and by acting as co-substrate in peroxidase-mediated cell wall stiffening and lignin polymerization. Here, by the means of AtAO1 promoter::green fluorescent protein-ß-glucuronidase (AtAO1::GFP-GUS) fusion analysis, we show that a strong AtAO1 gene expression occurs also in guard cells of leaves and flowers. The high expression levels of AtAO1 in tissues or cell types regulating water supply and water loss may suggest a role of the encoded protein in water balance homeostasis, by modulating coordinated adjustments in anatomical and functional features of xylem tissue and guard cells during acclimation to adverse environmental conditions.


Assuntos
Amina Oxidase (contendo Cobre)/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Estômatos de Plantas/metabolismo , Transpiração Vegetal , Água , Xilema/metabolismo , Acetatos/metabolismo , Parede Celular/metabolismo , Ciclopentanos/metabolismo , Flores/metabolismo , Glucuronidase/metabolismo , Peróxido de Hidrogênio/metabolismo , Oxirredutases/metabolismo , Oxilipinas/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Plantas Geneticamente Modificadas , Poliaminas/metabolismo , Putrescina/metabolismo , Xilema/fisiologia
12.
Plant Physiol ; 168(2): 690-707, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25883242

RESUMO

Polyamines are involved in key developmental processes and stress responses. Copper amine oxidases oxidize the polyamine putrescine (Put), producing an aldehyde, ammonia, and hydrogen peroxide (H2O2). The Arabidopsis (Arabidopsis thaliana) amine oxidase gene At4g14940 (AtAO1) encodes an apoplastic copper amine oxidase expressed at the early stages of vascular tissue differentiation in roots. Here, its role in root development and xylem differentiation was explored by pharmacological and forward/reverse genetic approaches. Analysis of the AtAO1 expression pattern in roots by a promoter::green fluorescent protein-ß-glucuronidase fusion revealed strong gene expression in the protoxylem at the transition, elongation, and maturation zones. Methyl jasmonate (MeJA) induced AtAO1 gene expression in vascular tissues, especially at the transition and elongation zones. Early protoxylem differentiation was observed upon MeJA treatment along with Put level decrease and H2O2 accumulation in wild-type roots, whereas Atao1 loss-of-function mutants were unresponsive to the hormone. The H2O2 scavenger N,N(1)-dimethylthiourea reversed the MeJA-induced early protoxylem differentiation in wild-type seedlings. Likewise, Put, which had no effect on Atao1 mutants, induced early protoxylem differentiation in the wild type, this event being counteracted by N,N(1)-dimethylthiourea treatment. Consistently, AtAO1-overexpressing plants showed lower Put levels and early protoxylem differentiation concurrent with H2O2 accumulation in the root zone where the first protoxylem cells with fully developed secondary wall thickenings are found. These results show that the H2O2 produced via AtAO1-driven Put oxidation plays a role in MeJA signaling leading to early protoxylem differentiation in root.


Assuntos
Amina Oxidase (contendo Cobre)/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Diferenciação Celular/efeitos dos fármacos , Cobre/metabolismo , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Raízes de Plantas/citologia , Xilema/citologia , Acetatos/farmacologia , Amina Oxidase (contendo Cobre)/genética , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Mutação/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Putrescina/metabolismo , Tioureia/análogos & derivados , Tioureia/farmacologia , Xilema/efeitos dos fármacos
13.
Plants (Basel) ; 4(3): 489-504, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27135338

RESUMO

Polyamines (PAs) are aliphatic polycations present in all living organisms. A growing body of evidence reveals their involvement as regulators in a variety of physiological and pathological events. They are oxidatively deaminated by amine oxidases (AOs), including copper amine oxidases (CuAOs) and flavin adenine dinucleotide (FAD)-dependent polyamine oxidases (PAOs). The biologically-active hydrogen peroxide (H2O2) is a shared compound in all of the AO-catalyzed reactions, and it has been reported to play important roles in PA-mediated developmental and stress-induced processes. In particular, the AO-driven H2O2 biosynthesis in the cell wall is well known to be involved in plant wound healing and pathogen attack responses by both triggering peroxidase-mediated wall-stiffening events and signaling modulation of defense gene expression. Extensive investigation by a variety of methodological approaches revealed high levels of expression of cell wall-localized AOs in root xylem tissues and vascular parenchyma of different plant species. Here, the recent progresses in understanding the role of cell wall-localized AOs as mediators of root xylem differentiation during development and/or under stress conditions are reviewed. A number of experimental pieces of evidence supports the involvement of apoplastic H2O2 derived from PA oxidation in xylem tissue maturation under stress-simulated conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...