Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 12: 1394191, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38882214

RESUMO

This review provides a comprehensive overview of the production and modification of CZTS nanoparticles (NPs) and their application in electrocatalysis for water splitting. Various aspects, including surface modification, heterostructure design with carbon nanostructured materials, and tunable electrocatalytic studies, are discussed. A key focus is the synthesis of small CZTS nanoparticles with tunable reactivity, emphasizing the sonochemical method's role in their formation. Despite CZTS's affordability, it often exhibits poor hydrogen evolution reaction (HER) behavior. Carbon materials like graphene, carbon nanotubes, and C60 are highlighted for their ability to enhance electrocatalytic activity due to their unique properties. The review also discusses the amine functionalization of graphene oxide/CZTS composites, which enhances overall water splitting performance. Doping with non-noble metals such as Fe, Co., and Ni is presented as an effective strategy to improve catalytic activity. Additionally, the synthesis of heterostructures consisting of CZTS nanoparticles attached to MoS2-reduced graphene oxide (rGO) hybrids is explored, showing enhanced HER activity compared to pure CZTS and MoS2. The growing demand for energy and the need for efficient renewable energy sources, particularly hydrogen generation, are driving research in this field. The review aims to demonstrate the potential of CZTS-based electrocatalysts for high-performance and cost-effective hydrogen generation with low environmental impact. Vacuum-based and non-vacuum-based methods for fabricating CZTS are discussed, with a focus on simplicity and efficiency. Future developments in CZTS-based electrocatalysts include enhancing activity and stability, improving charge transfer mechanisms, ensuring cost-effectiveness and scalability, increasing durability, integrating with renewable energy sources, and gaining deeper insight into reaction processes. Overall, CZTS-based electrocatalysts show great promise for sustainable hydrogen generation, with ongoing research focused on improving performance and advancing their practical applications.

2.
Molecules ; 27(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36080351

RESUMO

The advancements in nanotechnology and nanomedicine are projected to solve many glitches in medicine, especially in the fields of cancer and infectious diseases, which are ranked in the top five most dangerous deadly diseases worldwide by the WHO. There is great concern to eradicate these problems with accurate diagnosis and therapies. Among many developed therapeutic models, near infra-red mediated phototherapy is a non-invasive technique used to invade many persistent tumors and bacterial infections with less inflammation compared with traditional therapeutic models such as radiation therapy, chemotherapy, and surgeries. Herein, we firstly summarize the up-to-date research on graphene phototheranostics for a better understanding of this field of research. We discuss the preparation and functionalization of graphene nanomaterials with various biocompatible components, such as metals, metal oxides, polymers, photosensitizers, and drugs, through covalent and noncovalent approaches. The multifunctional nanographene is used to diagnose the disease with confocal laser scanning microscopy, magnetic resonance imaging computed tomography, positron emission tomography, photoacoustic imaging, Raman, and ToF-SMIS to visualize inside the biological system for imaging-guided therapy are discussed. Further, treatment of disease by photothermal and photodynamic therapies against different cancers and bacterial infections are carefully conferred herein along with challenges and future perspectives.


Assuntos
Infecções Bacterianas , Grafite , Nanocompostos , Neoplasias , Infecções Bacterianas/diagnóstico por imagem , Infecções Bacterianas/terapia , Linhagem Celular Tumoral , Grafite/uso terapêutico , Humanos , Imagem Multimodal , Nanocompostos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Fototerapia , Nanomedicina Teranóstica/métodos
3.
Nanoscale Adv ; 4(3): 814-823, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36131824

RESUMO

The implementation of a structure-designed strategy to construct hierarchical architectures of multicomponent metal oxide-based electrode materials for energy storage devices is in the limelight. Herein, we report NiO nanoflakes impregnated on ZnCo2O4 nanorod arrays as ZnCo2O4@NiO core-shell structures on a flexible stainless-steel mesh substrate, fabricated by a simple, cost-effective and environmentally friendly reflux condensation method. The core-shell structure of ZnCo2O4@NiO is used as an electrode material in a supercapacitor as it provides a high specific surface area (134.79 m2 g-1) offering high electroactive sites for a redox reaction, reduces the electron and ion diffusion path, and promotes an efficient contact between the electroactive material and electrolyte. The binder-free ZnCo2O4@NiO electrode delivers a high specific capacitance of 882 F g-1 at 4 mA cm-2 current density and exhibits remarkable cycling stability (∼85% initial capacitance retention after 5000 charge-discharge cycles at 10 mA cm-2). The asymmetric supercapacitor device ZnCo2O4@NiO//rGO delivered a maximum energy density of 46.66 W h kg-1 at a power density of 800 W kg-1. The device exhibited 90.20% capacitance retention after 4000 cycles. These results indicate that the ZnCo2O4@NiO architecture electrode is a promising functional material for energy storage devices.

4.
Small ; 18(32): e2202133, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35835731

RESUMO

Designing a low-cost, highly efficient, and stable electrocatalyst that can synergistically speed up the reduction of polysulfide electrolytes while operative for long periods in the open air is critical for the practical application of quantum dot-sensitized solar cells (QDSSCs), but it remains a challenging task. Herein, a simple, straightforward, and two-step nanocomposite engineering approach that simultaneously combines metallic copper chalcogenides (MC) either Cu2- x S or Cu2- x Se with S, N dual-doped carbon (SNC) sources for devising high-quality counter electrode (CE) film are reported. First, the hierarchically assembled MC nanostructures are obtained using microwave-assisted synthesis. Second, these MCs are embedded within an ordered macro-meso-microporous carbon matrix to obtain Cu2- x S@C or Cu2- x SeS@C CE. These CEs are demonstrated to have composition dependents crystal structure, surface morphologies, photovoltaic performance, and electrochemical properties. In terms of power conversion efficiency (PCE), the Cu2- x SeS@C (9.89%) and Cu2- x S@C-CE (8.96%) constructed QDSSCs outperform both Cu2- x Se (8.96%) and Cu2- x S-constructed (7.79%) QDSSCs, respectively. The enhanced PCE could be attributed to the synergistic interaction of S and N dopants with MC interfaces that can not only enrich electric conductivity, and a higher surface-to-volume ratio but also offers a 3D network for superior charge transport at the interface.

5.
Nanoscale ; 13(11): 5730-5743, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33725063

RESUMO

For quantum dot sensitized solar cells (QDSSCs), modifying conservative polysulfide electrolytes with polymer additives has been proven as an effective method to control charge recombination processes at the TiO2/QDs/electrolyte interface and to accomplish efficient cell devices. In this respect, the polysulfide electrolyte is modified with polymeric and sulfur-rich graphitic carbon nitride (SGCN) to enhance the photovoltaic performance of QDSSCs. For the first time, SGCN is used to passivate surface trap states and act as the steric hindrance between TiO2/QDs/electrolyte interfaces. The QDSSCs fabricated with GCN and SGCN additives exhibited higher efficiencies, especially improved short-circuit current (JSC) and fill factors (FFs) than those of the liquid electrolyte. Cu-In-S sensitized QDSSCs constructed with GCN and SGCN additives exhibited efficiencies of 6.73% and 7.13%, respectively, whereas the liquid electrolytes delivered an efficiency of 6.16%. Additionally, the applicability of SGCN additives in various Cu-based QDSSCs to enhance their photovoltaic performance is further verified using Cu-In-Se QDSSCs. An increase in the conversion efficiencies of QDSSCs with SGCN additives is possibly due to (1) their electron-rich surface which can act as an obstacle for electron-hole recombination, thereby suppressing the back-transfer of photo-induced electrons to the QD/electrolyte interface; (2) SGCN facilitates the reduction of Sn2- to S2- redox couple, thus providing holes towards the QDs/electrolyte more efficiently. Overall, this work provides an innovative and economic additive to modify polysulfide electrolytes, thereby controlling the TiO2/QDs/electrolyte interfaces of QDSSCs.

6.
RSC Adv ; 11(6): 3666-3672, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35424283

RESUMO

Nanostructured NiCo2O4 is a promising material for energy storage systems. Herein, we report the binder-free deposition of porous marigold micro-flower like NiCo2O4 (PNCO) on the flexible stainless-steel mesh (FSSM) as (PNCO@FSSM) electrode by simple chemical bath deposition. The SEM and EDS analysis revealed the marigold micro-flowers like morphology of NiCo2O4 and its elemental composition. The porous nature of the electrode is supported by the BET surface area (100.47 m2 g-1) and BJH pore size diameter (∼1.8 nm) analysis. This PNCO@FSSM electrode demonstrated a specific capacitance of 530 F g-1 at a high current density of 6 mA cm-2 and revealed 90.5% retention of specific capacitance after 3000 cycles. The asymmetric supercapacitor device NiCo2O4//rGO within a voltage window of 1.4 V delivered a maximum energy density of 41.66 W h kg-1 at a power density of 3000 W kg-1. The cyclic stability study of this device revealed 73.33% capacitance retention after 2000 cycles. These results indicate that the porous NiCo2O4 micro-flowers electrode is a promising functional material for the energy storage device.

7.
Nanomaterials (Basel) ; 10(1)2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861834

RESUMO

The nanocomposites were prepared by synthesizing (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO)-oxidized cellulose nanofibrils (TCNFs) or cellulose nanocrystals (CNCs) with hydroxyapatite (HA) in varying composition ratios in situ. These nanocomposites were first obtained from eggshell-derived calcium and phosphate of ammonium dihydrogen orthophosphate as precursors at a stoichiometric Ca/P ratio of 1.67 with ultrasonication and compressed further by a uniaxial high-pressure technique. Different spectroscopic, microscopic, and thermogravimetric analyses were used to evaluate their structural, crystalline, and morphological properties, while their mechanical properties were assessed by an indentation method. The contents of TCNF and CNC were shown to render the formation of the HA crystallites and thus influenced strongly on the composite nanostructure and further on the mechanical properties. In this sense, the TCNF-based composites with relatively higher contents (30 and 40 wt %) of semicrystalline and flexible TCNFs resulted in smoother and more uniformly distributed HA particles with good interconnectivity, a hardness range of 550-640 MPa, a compression strength range of 110-180 MPa, an elastic modulus of ~5 GPa, and a fracture toughness value of ~6 MPa1/2 in the range of that of cortical bone. Furthermore, all the composites did not induce cytotoxicity to human bone-derived osteoblast cells but rather improved their viability, making them promising for bone tissue regeneration in load-bearing applications.

8.
ACS Omega ; 4(21): 18969-18977, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31763518

RESUMO

Using emergent highly proficient and inexpensive non-noble metal-based bifunctional electrocatalysts to overall water splitting reaction is a pleasingly optional approach to resolve greenhouse gases and energy anxiety. In this work, oleylamine-functionalized graphene oxide/Cu2ZnSnS4 composite (OAm-GO/CZTS) is prepared and investigated as a higher bifunctional electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The OAm-GO/CZTS shows brilliant electrocatalytic performance and durability toward H2 and O2 in both acidic and basic media, with overpotentials of 47 mV for HER and 1.36 V for OER at a current density of 10 mA cm-2 and Tafel slopes of 64 and 91 mV dec-1, respectively, which are extremely higher to those of transition metal chalcogenide and as good as of commercial precious-metal catalysts.

9.
ACS Omega ; 4(4): 7650-7657, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31459857

RESUMO

Cu2ZnSnS4 (CZTS) was synthesized by the sonochemical method using 2-methoxyethanol as the solvent and subsequently decorated onto graphene oxide (GO synthesized by the modified Hummers' method) using two different approaches such as in situ growth and ex situ synthesis followed by deposition. Preliminary characterizations indicated that the synthesized CZTS belongs to the kesterite structure with a sphere-like morphology. The in situ-synthesized CZTS/GO (I-CZTS/GO) composite is used as an efficient electrocatalyst for hydrogen evolution reaction (HER) which revealed superior electrocatalytic activity with a reduced overpotential (39.3 mV at 2 mA cm-2), Tafel slope (70 mV dec-1), a larger exchange current density of 908 mA cm-2, and charge transfer resistance (5 Ω), significantly different from pure CZTS. Besides, the I-CZTS/GO composite exhibits highest HER performance with high current stability of which shows no noticeable degradation after i-t amperometry. The catalytic activity demonstrates that the I-CZTS/GO composite could be a promising electrocatalyst in hydrogen production from their cooperative interactions.

10.
Mater Sci Eng C Mater Biol Appl ; 97: 793-802, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30678970

RESUMO

Photo-activated therapy is a non-invasive and promising medical technology for the treatment of cancers. Herein, we present Ce6-HA-CIS phototherapeutic nanohybrids composed of Cu-In-S (CIS) heterostructured nanorod (HS-rod), chlorin e6 (Ce6), and hyaluronic acid (HA) for the use in targeted photodynamic/photothermal therapy (PDT/PTT). In the Ce6-HA-CIS nanohybrids, the CIS HS-rod was investigated as a PTT agent to convert light into thermal energy, with Ce6 acting as a PDT agent to generate singlet oxygen (1O2). HA encapsulated the surface of the CIS HS-rod and aided the hydrophobic CIS HS-rod in achieving aqueous solubility. HA also acts as a tumor-specific targeting vector of cancer cells bearing the cluster determinant 44 receptor. Under light irradiation, the fabricated Ce6-HA-CIS nanohybrids exhibited high photothermal conversion efficiency, good photo-stability, and satisfactory photodynamic activity. In vitro and in vivo experiments demonstrated that Ce6-HA-CIS showed low cytotoxicity and synergistic photodynamic and photothermal cancer cell killing effects as compared to PTT or PDT agents alone. Therefore, these phototherapeutic nanohybrids may enhance cancer therapy in future clinical applications.


Assuntos
Nanotubos/química , Fármacos Fotossensibilizantes/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Clorofilídeos , Cobre/química , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Feminino , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Ácido Hialurônico/uso terapêutico , Índio/química , Luz , Masculino , Melanoma Experimental/tratamento farmacológico , Camundongos , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/química , Porfirinas/farmacologia , Porfirinas/uso terapêutico , Oxigênio Singlete/química , Oxigênio Singlete/metabolismo , Enxofre/química , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
11.
ACS Omega ; 3(10): 13676-13684, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30411047

RESUMO

Pure TiO2 and Cu-doped TiO2 nanoparticles are synthesized by the biomediated green approach using the Bengal gram bean extract. The extract containing biomolecules acts as capping agent, which helps to control the size of nanoparticles and inhibit the agglomeration of particles. Copper is doped in TiO2 to enhance the electronic conductivity of TiO2 and its electrochemical performance. The Cu-doped TiO2 nanoparticle-based anode shows high specific capacitance, good cycling stability, and rate capability performance for its envisaged application in lithium-ion battery. Among pure TiO2, 3% Cu-doped TiO2, and 7% Cu-doped TiO2 anode, the latter shows the highest capacity of 250 mAh g-1 (97.6% capacity retention) after 100 cycles and more than 99% of coulombic efficiency at 0.5 A g-1 current density. The improved electrochemical performance in the 7% Cu-doped TiO2 is attributed to the synergetic effect between copper and titania. The results reveal that Cu-doped TiO2 nanoparticles might be contributing to the enhanced electronic conductivity, providing an efficient pathway for fast electron transfer.

12.
RSC Adv ; 8(36): 20341-20346, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35541633

RESUMO

Herein, we adopted a novel noble metal-free Co-doped CZTS-based electrocatalyst for the hydrogen evolution reaction (HER), which was fabricated using a facile, effective, and scalable strategy by employing a sonochemical method. The optimized Co-doped CZTS electrocatalyst shows a superior HER performance with a small overpotential of 200 and 298 mV at 2 and 10 mA-1, respectively, and Tafel slope of 73 mV dec-1, and also exhibits excellent stability up to 700 cycles with negligible loss of the cathodic current. The ease of synthesis and high activity of the Co-doped CZTS-based cost-effective catalytic system appear to be promising for HER catalysis.

13.
Dalton Trans ; 46(43): 14859-14868, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29043333

RESUMO

The synthesis of orthorhombic nitrogen-doped niobium oxide (Nb2O5-xNx) nanostructures was performed and a photocatalytic study carried out in their use in the conversion of toxic H2S and water into hydrogen under UV-Visible light. Nanostructured orthorhombic Nb2O5-xNx was synthesized by a simple solid-state combustion reaction (SSCR). The nanostructural features of Nb2O5-xNx were examined by FESEM and HRTEM, which showed they had a porous chain-like structure, with chains interlocked with each other and with nanoparticles sized less than 10 nm. Diffuse reflectance spectra depicted their extended absorbance in the visible region with a band gap of 2.4 eV. The substitution of nitrogen in place of oxygen atoms as well as Nb-N bond formation were confirmed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. A computational study (DFT) of Nb2O5-xNx was also performed for investigation and conformation of the crystal and electronic structure. N-Substitution clearly showed a narrowing of the band gap due to N 2p bands cascading above the O 2p band. Considering the band gap in the visible region, Nb2O5-xNx exhibited enhanced photocatalytic activity toward hydrogen evolution (3010 µmol h-1 g-1) for water splitting and (9358 µmol h-1 g-1) for H2S splitting under visible light. The enhanced photocatalytic activity of Nb2O5-xNx was attributed to its extended absorbance in the visible region due to its electronic structure being modified upon doping, which in turn generates more electron-hole pairs, which are responsible for higher H2 generation. More significantly, the mesoporous nanostructure accelerated the supression of electron and hole recombination, which also contributed to the enhancement of its activity.

14.
ACS Appl Mater Interfaces ; 9(31): 26016-26028, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28714300

RESUMO

Heterostructure-based metal oxide thin films are recognized as the leading material for new generation, high-performance, stable, and flexible supercapacitors. However, morphologies, like nanoflakes, nanotubes, nanorods, and so forth, have been found to suffer from issues related to poor cycle stability and energy density. Thus, to circumvent these problems, herein, we have developed a low-cost, high surface area, and environmentally benign self-assembled ZnFe2O4 nanoflake@ZnFe2O4/C nanoparticle heterostructure electrode via anchoring ZnFe2O4 and carbon nanoparticles using an in situ biomediated green rotational chemical bath deposition approach for the first time. The synthesized ZnFe2O4 nanoflake@ZnFe2O4/C nanoparticle heterostructure thin films demonstrate an excellent specific capacitance of 1884 F g-1 at a current density of 5 mA cm-2. Additionally, all solid-state flexible asymmetric supercapacitor devices were designed on the basis of ZnFe2O4 nanoflake@ZnFe2O4/C nanoparticle heterostructures as the negative electrode and reduced graphene oxide and energy density of 81 Wh kg-1 at a power density of 3.9 kW kg-1. Similarly, the asymmetric device exhibits ultralong cycle stability of 35 000 cycles by losing only 2% capacitance. The excellent performance of the device is attributed to the self-assembled organization of the heterostructures. Moreover, the in situ biomediated green strategy is also applicable for the synthesis of other metal oxide and carbon-based heterostructure electrodes.

15.
J Biomed Mater Res A ; 105(11): 2935-2947, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28639437

RESUMO

Nanostructured hydroxyapatite (HAp) is the most favorable candidate biomaterial for bone tissue engineering because of its bioactive and osteoconductive properties. Herein, we report for the first time ultrasound-assisted facile and economic approach for the synthesis of nanocrystalline hydroxyapatite (Ca10 (PO4 )6 (OH)2 ) using recycled eggshell biowaste referred as EHAp. The process involves the reaction of eggshell biowaste as a source of calcium and ammonium dihydrogen orthophosphate as a phosphate source. Ultrasound-mediated chemical synthesis of hydroxyapatite (HAp) is also carried out using similar approach wherein commercially available calcium hydroxide and ammonium dihydrogen orthophosphate were used as calcium and phosphate precursors, respectively and referred as CHAp for better comparison. The prepared materials were characterized by X-ray diffraction, field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy to determine crystal structure, particle morphology, and the presence of chemical functional groups. The nanocrystalline EHAp and CHAp were observed to have spherical morphology with uniform size distribution. Furthermore, mechanical properties such as Vickers hardness, fracture toughness, and compression tests have been studied of the EHAp and CHAp samples showing promising results. Mechanical properties show the influence of calcination at 600°C EHAp and CHAp material. After calcination, in the case of EHAp material an average hardness, mechanical strength, elastic modulus, and fracture toughness were found 552 MPa, 46.6 MPa, 2824 MPa, and 3.85 MPa m1/2 , respectively, while in the case of CHAp 618 MPa, 47.5 MPa, 2071 MPa, and 3.13 MPa m1/2 . In vitro cell studies revealed that the EHAp and CHAp nanoparticles significantly increased the attachment and proliferation of the hFOB cells. Here, we showed that EHAp and CHAp provide promising biocompatible materials that do not affect the cell viability and proliferation with enhancing the osteogenic activity of osteoblasts. Moreover, hFOB cells are found to express Osteocalcin, Osteopontin, Collagen I, Osteonectin, BMP-2 on the EHAp and CHAp bone graft. This study demonstrates the formation of pure nanocrystalline HAp with promising properties justifying the fact that the eggshell biowaste could be successfully used for the synthesis of HAp with good mechanical and osteogenic properties. These findings may have significant implications for designing of biomaterial for use in orthopedic tissue regeneration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2935-2947, 2017.


Assuntos
Materiais Biocompatíveis/química , Durapatita/química , Casca de Ovo/química , Nanopartículas/química , Animais , Linhagem Celular , Proliferação de Células , Módulo de Elasticidade , Química Verde/métodos , Dureza , Humanos , Nanopartículas/ultraestrutura , Nanotecnologia/métodos , Osteoblastos/citologia , Sonicação/métodos , Ondas Ultrassônicas , Difração de Raios X
16.
J Mater Chem B ; 5(31): 6282-6291, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32264444

RESUMO

Composites of gold nanomaterials and imaging agents show promise in cancer therapy. Here we have demonstrated a rapid, facile, environmentally friendly, and organic solvent-free method for the synthesis of a gold/gadolinium-doped carbon quantum dot (Au/GdC) nanocomposite for magnetic resonance imaging (MRI) and photothermal ablation (PTA) therapy. The gadolinium-doped carbon quantum dots (Gd@CQDs) were synthesized using a one-pot, microwave-assisted method, and used as reducing and stabilizing agents to both form the Au/GdC nanocomposite and prevent its agglomeration. Formation of the Au/GdC nanocomposite is achieved by simple mixing of Gd@CQDs and a gold precursor, without the addition of any other reducing agents, surface passivating agents, surfactants, or organic solvents. The Au/GdC nanocomposite shows paramagnetism, surface plasma resonance in the near infrared region (NIR), and excellent photostability. Furthermore, it provides high longitudinal relaxivity (r1 = 13.95 mM-1 s-1), indicating its potential for use as a T1 contrast agent in MRI. Furthermore, in vitro and in vivo studies using HeLa cells and zebrafish embryos as cancer and animal cell models, respectively, confirmed the low toxicity and excellent biocompatibility of the Au/GdC nanocomposite. Notably, our results demonstrate the ability of the Au/GdC nanocomposite to efficiently destroy cancer cells using PTA. Therefore, this work reveals a simple and powerful strategy to fabricate an Au/GdC nanocomposite for MRI and photothermal ablation of cancer cells.

17.
Acta Biomater ; 46: 151-164, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27662808

RESUMO

Herein, we synthesized an S, N, and Gd tri-element doped magnetofluorescent carbon quantum dots (GdNS@CQDs) within 10min by using a one-pot microwave method. Our results showed that these magnetofluorescent GdNS@CQDs have excellent fluorescent and magnetic properties. Moreover, GdNS@CQDs exhibited high stability at physiological conditions and ionic strength. These magnetofluorescent GdNS@CQDs were conjugated with a folic acid, denoted as FA-GdNS@CQDs, for targeting dual modal fluorescence/magnetic resonance (MR) imaging. The in vitro and in vivo studies confirmed the high biocompatibility and low toxicity of FA-GdNS@CQDs. FA-GdNS@CQDs enhanced the MR response as compared to that for commercial Gd-DTPA. The targeting capabilities of FA-GdNS@CQDs were confirmed in HeLa and HepG2 cells using in vitro fluorescence and MR dual modality imaging. Additionally, an anticancer drug, doxorubicin, was incorporated into the FA-GdNS@CQDs forming FA-GdNS@CQDs-DOX, which enables targeted drug delivery. Importantly, the prepared FA-GdNS@CQDs-DOX showed a high quantity of doxorubicin loading capacity (about 80%) and pH-sensitive drug release. The uptake into cancer cells and the intracellular location of the FA-GdNS@CQDs were observed by confocal laser scanning microscopy. We also successfully demonstrated in vivo fluorescence bio imaging of the FA-GdNS@CQDs, using zebrafish as an animal model. STATEMENT OF SIGNIFICANCE: In this manuscript, we reported a facial, rapid, and environmental friendly method to fabricate hetero atoms including gadolinium, nitrogen, and sulfur doped multi-functional magnetofluorescent carbon quantum dots (GdNS@CQDs) nanocomposite. These multifunctional GdNS@CQDs were conjugated with a folic acid for targeting dual modal fluorescence/magnetic resonance imaging. Additionally, an anticancer drug, doxorubicin, was incorporated into the nanocomposite forming FA-GdNS@CQDs-DOX, which enables targeted drug delivery. We have developed GdNS@CQDs with integrated functions for simultaneous in vitro cell imaging, targeting, and pH-sensitive controlled drug release in HeLa cells. Furthermore, we successfully demonstrated the use of this material for in vivo fluorescence imaging, using zebrafish as an animal model.


Assuntos
Carbono/química , Doxorrubicina/uso terapêutico , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Imageamento por Ressonância Magnética/métodos , Nanopartículas/química , Pontos Quânticos/química , Animais , Materiais Biocompatíveis/química , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Fluorescência , Ácido Fólico , Gadolínio/química , Células HeLa , Células Hep G2 , Humanos , Fenômenos Magnéticos , Camundongos , Nanopartículas/ultraestrutura , Fenômenos Ópticos , Tamanho da Partícula , Espectrofotometria Ultravioleta , Peixe-Zebra
18.
Chem Commun (Camb) ; 52(12): 2557-60, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26744745

RESUMO

Contact angle measurements (surface wettability) of the electrolytes (1 M KOH, NaOH and LiOH) and their combination (1 M 1 : 1 v/v LiOH + KOH, NaOH + KOH and LiOH + NaOH) in contact with ZnFe2O4 nano-flake based electrodes is used as an empirical diagnostic tool to pre-evaluate the performance of a supercapacitor prior to actual fabrication of the device.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...