Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 6(36): 23564-23569, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34549153

RESUMO

Five types of niobium(V) oxides (Nb2O5) were synthesized by hydrothermal and heat treatment processes, and their structural properties and catalytic activities for the hydrogen absorption/desorption reactions of magnesium were characterized. The synthesized Nb oxides were dispersed on magnesium hydride (MgH2), a typical hydrogen storage material, using the ball-milling method. All the synthesized Nb oxides improved the reaction kinetics of the hydrogen desorption/absorption reactions. The catalytic activities for the hydrogen desorption were comparable, while the hydrogen absorption rates were significantly different for each synthesized Nb oxide. This difference can be explained by the structural stability of Nb2O5, which is related to the formation of a catalytically active state by the reduction of Nb2O5 during the ball-milling process. Notably, the highest catalytic effect was observed for Nb2O5 with a highly crystalline pyrochlore structure and a low specific surface area, suggesting that pyrochlore Nb2O5 is a metastable phase. However, only the amorphous Nb oxide was out of order, even though there is a report on the high catalytic activity of amorphous Nb oxide. This is attributed to the initial condensed state of amorphous Nb oxide, because particle size affects the dispersion state on the MgH2 surface, which is also important for obtaining high catalytic activity. Thus, it is concluded that Nb2O5 with lower stability of the crystal structure and smaller particle size shows better catalysis for both hydrogen desorption and absorption reactions.

2.
ACS Omega ; 5(34): 21906-21912, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32905312

RESUMO

Magnesium is a promising hydrogen storage material but requires an efficient catalyst to enhance the sluggish kinetics of its hydrogen desorption/absorption reactions. Niobium catalysts have been shown to accomplish this, but the effective factors for catalysis on hydrogen desorption/absorption of Mg are not well understood. In order to investigate these aspects, various types of Nb oxides were synthesized and mixed with Mg, and their catalytic properties were investigated. The spray pyrolysis synthesis of Nb oxides at different temperatures produced homogeneous spherical particles with different degrees of crystallinity, while Nb oxide particles synthesized by simple calcination of ammonium niobium oxalate were nonuniform. These Nb oxides show significant catalytic activities for the hydrogen desorption/absorption of Mg, with amorphous oxides being more effective catalyst precursors than crystalline precursors. Metastable, amorphous Nb oxide is more easily converted to the reduced state, which is the catalytically active state for the reactions. In addition, Nb in the deactivated sample is in the oxidized state compared with the initially activated sample, and the catalytically active (reduced) state is recovered by reactions with hydrogen. Based on these findings, it is concluded that the chemical state of Nb is an important factor in catalyzing the desorption/absorption of hydrogen by Mg, and the catalytically active state can be preserved without further treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...