Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Cancer ; 171: 143-149, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35717822

RESUMO

INTRODUCTION: The protective role against SARS-CoV-2 infection by the third booster dose of mRNA vaccines in cancer patients with solid malignancies is presently unknown. We prospectively investigated the occurrence of COVID-19 in cancer patients on active therapy after the booster vaccine dose. METHODS: Cancer patients on treatment at the Center for Immuno-Oncology (CIO) of the University Hospital of Siena, Italy, and health care workers at CIO who had received a booster third dose of mRNA vaccine entered a systematic follow-up monitoring period to prospectively assess their potential risk of SARS-CoV-2 infection. Serological and microneutralization assay were utilized to assess levels of anti-spike IgG, and of neutralizing antibodies to the SARS-CoV-2 Wild Type, Delta and Omicron variants, respectively, after the booster dose and after negativization of the nasopharyngeal swab for those who had developed COVID-19. RESULTS: Ninety cancer patients with solid tumors on active treatment (Cohort 1) and 30 health care workers (Cohort 2) underwent a booster third dose of mRNA vaccine. After the booster dose, the median value of anti-spike IgG was higher (p = 0.009) in patients than in healthy subjects. Remarkably, 11/90 (12%) patients and 11/30 (37%) healthy subjects tested positive to SARS-CoV-2 infection during the monitoring period. Similar levels of anti-spike IgG and of neutralizing antibodies against all the investigated variants, with geometric mean titers of neutralizing antibodies against the Omicron being the lowest were detected after the booster dose and after COVID-19 in both Cohorts. CONCLUSIONS: The occurrence of SARS-CoV-2 infection we observed in a sizable proportion of booster-dosed cancer patients and in healthy subjects during the Omicron outbreak indicates that highly specific vaccines against SARS-CoV-2 variants are urgently required.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Neoplasias , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Humanos , Imunoglobulina G , Neoplasias/terapia , SARS-CoV-2 , Vacinas Sintéticas , Proteínas do Envelope Viral/genética , Vacinas de mRNA
3.
Cancers (Basel) ; 12(2)2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033266

RESUMO

Targeting of the programmed cell death protein (PD)-1/programmed death-ligand 1 (PD-L1) axis has shown a significant clinical impact in several tumor types. Accordingly, our phase II NIBIT-MESO-1 study demonstrated an improved clinical efficacy in mesothelioma patients treated with the anti-PD-L1 durvalumab combined with the anti-cytotoxic T-lymphocyte antigen (CTLA)-4 tremelimumab, as compared to tremelimumab alone. Due to the promising therapeutic activity of immune check-point inhibitors (ICIs) in mesothelioma patients, the identification of biomarkers predictive of response to treatment is of crucial relevance. The prognostic role of soluble PD-L1 (sPD-L1) proposed in cancer patients prompted us to investigate this protein in sera from mesothelioma patients (n = 40) enrolled in the NIBIT-MESO-1 study. A significant (p < 0.001) increase in sPD-L1 levels was detected in patients after the first cycle and during therapy vs. baseline. A longer overall survival (OS) was observed in patients with sPD-L1 concentrations below (at baseline, d1C2, d1C5 (p < 0.01)) or FC values above (p < 0.05 at d1C2, d1C3, d1C5) their statistically calculated optimal cut-offs. On the basis of these initial results, the specific role of CTLA-4-, PD-L1-, or PD-1-targeting on sPD-L1 release was then investigated in sera from 81 additional ICI-treated solid cancer patients. Results showed a significant (p < 0.001) increase of sPD-L1 levels during therapy compared to baseline only in anti-PD-L1-treated patients, supporting the specific involvement of PD-L1 targeting in the release of its soluble form. Our findings suggest that sPD-L1 represents a predictive biomarker of clinical response to anti-PD-L1 cancer immunotherapy.

5.
Cancer Immunol Immunother ; 68(1): 143-150, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30564888

RESUMO

The ongoing revolution in cancer immunotherapy stems from the knowledge that distinct immune-checkpoints regulate the physiological crosstalk between and among immune cells by delivering inhibitory or activating signals. These notions, and the availability of mAb directed to diverse immune-checkpoint molecules, have led to a significant clinical improvement in cancer treatment. In this scenario, further achievements are undoubtedly to be expected from the contribution of novel, proof-of-principle clinical trials designed to explore the therapeutic efficacy of new immunotherapy-based combinations and treatment sequences. Along these lines, the clinical translation of pre-clinical evidence generated by non-profit research entities is likely to provide a significant contribution to gaining new insights that will further boost the field of cancer immunotherapy. To pursue this goal, and to provide comprehensive educational programs in immune-oncology (I-O), several national and global networks have been revitalized or newly established in recent years. This rapidly evolving scenario led the Board of Directors of the Italian Network of Tumor Bio-Immunotherapy (NIBIT) to establish the NIBIT Foundation. This Focused Research Review summarizes the main ongoing and prospective I-O activities of the NIBIT Foundation.


Assuntos
Terapia Biológica/métodos , Imunoterapia/métodos , Oncologia/métodos , Neoplasias/terapia , Humanos , Serviços de Informação/organização & administração , Itália , Oncologia/organização & administração , Neoplasias/imunologia , Estudos Prospectivos , Pesquisa Translacional Biomédica/métodos , Pesquisa Translacional Biomédica/organização & administração
6.
Front Pharmacol ; 9: 1443, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30581389

RESUMO

DNA hypomethylating agents (DHAs) play a well-acknowledged role in potentiating the immunogenicity and the immune recognition of neoplastic cells. This immunomodulatory activity of DHAs is linked to their ability to induce or to up-regulate on neoplastic cells the expression of a variety of immune molecules that play a crucial role in host-tumor immune interactions. To further investigate the clinical potential of diverse epigenetic compounds when combined with immunotherapeutic strategies, we have now compared the tumor immunomodulatory properties of the first generation DHAs, azacytidine (AZA) and decitabine (DAC) and of the next generation DHA, guadecitabine. To this end, human melanoma and hematological cancer cells were treated in vitro with 1 µM guadecitabine, DAC or AZA and then studied by molecular and flow cytometry analyses for changes in their baseline expression of selected immune molecules involved in different mechanism(s) of immune recognition. Results demonstrated a stronger DNA hypomethylating activity of guadecitabine and DAC, compared to AZA that associated with stronger immunomodulatory activities. Indeed, the mRNA expression of cancer testis antigens, immune-checkpoint blocking molecules, immunostimulatory cytokines, involved in NK and T cell signaling and recruiting, and of genes involved in interferon pathway was higher after guadecitabine and DAC compared to AZA treatment. Moreover, a stronger up-regulation of the constitutive expression of HLA class I antigens and of Intercellular Adhesion Molecule-1 was observed with guadecitabine and DAC compared to AZA. Guadecitabine and DAC seem to represent the optimal combination partners to improve the therapeutic efficacy of immunotherapeutic agents in combination/sequencing clinical studies.

8.
Oncoimmunology ; 6(7): e1323618, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28811958

RESUMO

The introduction of immune checkpoint blockade into the clinical practice resulted in improvement of survival of a significant portion of melanoma patients. Consequently, predictive biomarkers of response are needed to optimize patient's stratification and the development of combination therapies. The aim of this study was to determine whether levels of soluble NKG2D ligands (MICA, MICB, ULBP1, 2 and 3; sNKG2DLs) in the serum of melanoma patients can serve as useful predictors of response to the treatment with immune checkpoint blockade. sNKG2DLs were measured by ELISA in baseline and post-treatment serum and these results were correlated with the clinical outcome of melanoma patients (N = 194). The same determinations were performed also in a cohort of patients (N = 65) treated with either chemotherapy, radiotherapy, or mutated BRAF inhibitors (BRAFi). Absence of soluble MICB and ULBP-1 in baseline serum correlated with improved survival (OS = 21.6 and 25.3 mo and p = 0.02 and 0.01, respectively) of patients treated with immunological therapies while detectable levels of these molecules were found in poor survivors (OS = 8.8 and 12.1 mo, respectively). Multivariate analysis showed that LDH (p <0.0001), sULBP-1 (p = 0.02), and sULBP-2 (p = 0.02) were independent predictors of clinical outcome for the cohort of melanoma patients treated with immune checkpoint blockade. Only LDH but not sNKG2DLs was significantly associated with the clinical outcome of patients treated with standard or BRAFi regimens. These findings highlight the relevance of sNKG2DLs in the serum of melanoma patients as biomarkers for patients' stratification and optimization of immune checkpoint inhibition regimens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...