Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(11): 111501, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-37001081

RESUMO

Vacuum quantum fluctuations near horizons are known to yield correlated emission by the Hawking effect. We use a driven-dissipative quantum fluid of microcavity polaritons as an analog model of a quantum field theory on a black-hole spacetime and numerically calculate correlated emission. We show that, in addition to the Hawking effect at the sonic horizon, quantum fluctuations may result in a sizable stationary excitation of a quasinormal mode of the field theory. Observable signatures of the excitation of the quasinormal mode are found in the spatial density fluctuations as well as in the spectrum of Hawking emission. This suggests an intrinsic fluctuation-driven mechanism leading to the quantum excitation of quasinormal modes on black hole spacetimes.

2.
Phys Rev Lett ; 129(10): 103601, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36112465

RESUMO

Characterizing elementary excitations in quantum fluids is essential to study their collective effects. We present an original angle-resolved coherent probe spectroscopy technique to study the dispersion of these excitation modes in a fluid of polaritons under resonant pumping. Thanks to the unprecedented spectral and spatial resolution, we observe directly the low-energy phononic behavior and detect the negative-energy modes, i.e., the ghost branch, of the dispersion relation. In addition, we reveal narrow spectral features precursory of dynamical instabilities due to the intrinsic out-of-equilibrium nature of the system. This technique provides the missing tool for the quantitative study of quantum hydrodynamics in polariton fluids.

3.
Philos Trans A Math Phys Eng Sci ; 378(2177): 20190225, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32684134

RESUMO

Analogue gravity enables the study of fields on curved space-times in the laboratory. There are numerous experimental platforms in which amplification at the event horizon or the ergoregion has been observed. Here, we demonstrate how optically generating a defect in a polariton microcavity enables the creation of one- and two-dimensional, transsonic fluid flows. We show that this highly tuneable method permits the creation of horizons. Furthermore, we present a rotating geometry akin to the water-wave bathtub vortex. These experiments usher in the possibility of observing stimulated as well as spontaneous amplification by the Hawking, Penrose and Zeld'ovich effects in fluids of light. This article is part of a discussion meeting issue 'The next generation of analogue gravity experiments'.

4.
Phys Rev Lett ; 121(18): 183604, 2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30444401

RESUMO

Quantum fluids of light are a photonic counterpart to atomic Bose gases and are attracting increasing interest for probing many-body physics quantum phenomena such as superfluidity. Two different configurations are commonly used: the confined geometry where a nonlinear material is fixed inside an optical cavity and the propagating geometry where the propagation direction plays the role of an effective time for the system. The observation of the dispersion relation for elementary excitations in a photon fluid has proved to be a difficult task in both configurations with few experimental realizations. Here, we propose and implement a general method for measuring the excitations spectrum in a fluid of light, based on a group velocity measurement. We observe a Bogoliubov-like dispersion with a speed of sound scaling as the square root of the fluid density. This Letter demonstrates that a nonlinear system based on an atomic vapor pumped near resonance is a versatile and highly tunable platform to study quantum fluids of light.

5.
Chemphyschem ; 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30281885

RESUMO

Analyzing the autocorrelation function of the fluorescence intensity, we demonstrate that these nanoemitters are characterized by a short value of the mean duration of bright periods (ten to a few hundreds of microseconds). The comparison of the results obtained for samples with different geometries shows that not only the shell thickness is crucial but also the shape of the dot-in-rods. Increasing the shell aspect ratio results in shorter bright periods suggesting that surface traps impact the stability of the fluorescence intensity.

6.
Phys Rev Lett ; 116(11): 116402, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-27035313

RESUMO

We report the experimental investigation and theoretical modeling of a rotating polariton superfluid relying on an innovative method for the injection of angular momentum. This novel, multipump injection method uses four coherent lasers arranged in a square, resonantly creating four polariton populations propagating inwards. The control available over the direction of propagation of the superflows allows injecting a controllable nonquantized amount of optical angular momentum. When the density at the center is low enough to neglect polariton-polariton interactions, optical singularities, associated with an interference pattern, are visible in the phase. In the superfluid regime resulting from the strong nonlinear polariton-polariton interaction, the interference pattern disappears and only vortices with the same sign are persisting in the system. Remarkably, the number of vortices inside the superfluid region can be controlled by controlling the angular momentum injected by the pumps.

8.
Sci Rep ; 5: 9230, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25784592

RESUMO

Exciton-polaritons are light-matter mixed states interacting via their exciton fraction. They can be excited, manipulated, and detected using all the versatile techniques of modern optics. An exciton-polariton gas is therefore a unique platform to study out-of-equilibrium interacting quantum fluids. In this work, we report the formation of a ring-shaped array of same sign vortices after injection of angular momentum in a polariton superfluid. The angular momentum is injected by a ℓ = 8 Laguerre-Gauss beam. In the linear regime, a spiral interference pattern containing phase defects is visible. In the nonlinear (superfluid) regime, the interference disappears and eight vortices appear, minimizing the energy while conserving the quantized angular momentum. The radial position of the vortices evolves in the region between the two pumps as a function of the density. Hydrodynamic instabilities resulting in the spontaneous nucleation of vortex-antivortex pairs when the system size is sufficiently large confirm that the vortices are not constrained by interference when nonlinearities dominate the system.

9.
Opt Lett ; 39(7): 1791-4, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24686606

RESUMO

Images of semiconductor "dot-in-rods" and their small clusters are studied by measuring the second-order correlation function with a spatially resolving intensified CCD camera. This measurement allows one to distinguish between a single dot and a cluster and, to a certain extent, to estimate the number of dots in a cluster. A more advanced measurement is proposed, based on higher-order correlations, enabling more accurate determination of the number of dots in a small cluster. Nonclassical features of the light emitted by such a cluster are analyzed.

10.
Phys Rev Lett ; 112(5): 053601, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24580589

RESUMO

A laser pulse, several meV red detuned from the excitonic line of a quantum well, has been shown to induce an almost instantaneous and rigid shift of the lower and upper polariton branches. Here we demonstrate that through this shift ultrafast all-optical control of the polariton population in a semiconductor microcavity should be achievable. In the proposed setup, a Stark field is used to bring the lower polariton branch in or out of resonance with a quasiresonant continuous-wave laser, thereby favoring or inhibiting the injection of polaritons into the cavity. Moreover, we show that this technique allows for the implementation of optical switches with extremely high repetition rates.

11.
Nat Commun ; 5: 3260, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24518009

RESUMO

The generation of squeezed and entangled light fields is a crucial ingredient for the implementation of quantum information protocols. In this context, semiconductor materials offer a strong potential for the implementation of on-chip devices operating at the quantum level. Here we demonstrate a novel source of continuous variable squeezed light in pillar-shaped semiconductor microcavities in the strong coupling regime. Degenerate polariton four-wave mixing is obtained by exciting the pillar at normal incidence. We observe a bistable behaviour and we demonstrate the generation of squeezing near the turning point of the bistability curve. The confined pillar geometry allows for a larger amount of squeezing than planar microcavities due to the discrete energy levels protected from excess noise. By analysing the noise of the emitted light, we obtain a measured intensity squeezing of 20.3%, inferred to be 35.8% after corrections.

12.
Nat Commun ; 4: 1778, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23653190

RESUMO

Although optical technology provides the best solution for the transmission of information, all-optical devices must satisfy several qualitative criteria to be used as logic elements. In particular, cascadability is difficult to obtain in optical systems, and it is assured only if the output of one stage is in the correct form to drive the input of the next stage. Exciton-polaritons, which are composite particles resulting from the strong coupling between excitons and photons, have recently demonstrated huge non-linearities and unique propagation properties. Here we show that polariton fluids moving in the plane of the microcavity can operate as input and output of an all-optical transistor, obtaining up to 19 times amplification and demonstrating the cascadability of the system. Moreover, the operation as an AND/OR gate is shown, validating the connectivity of multiple transistors in the microcavity plane and opening the way to the implementation of polariton integrated circuits.

13.
Opt Lett ; 38(5): 712-4, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23455274

RESUMO

We report on an experiment in which orbital angular momentum (OAM) of light is mapped at the single-photon level into and out of a cold atomic ensemble. Based on the dynamic electromagnetically induced transparency protocol, the demonstrated optical memory enables the reversible mapping of Laguerre-Gaussian modes with preserved handedness of the helical phase structure. The demonstrated capability opens the possibility to the storage of qubits encoded as superpositions of OAM states and to multidimensional light matter interfacing.

14.
Opt Express ; 20(4): 4346-51, 2012 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-22418192

RESUMO

Electromagnetically-induced transparency has become an important tool to control the optical properties of dense media. However, in a broad class of systems, the interplay between inhomogeneous broadening and the existence of several excited levels may lead to a vanishing transparency. Here, by identifying the underlying physical mechanisms resulting in this effect, we show that transparency can be strongly enhanced. We thereby demonstrate a 5-fold enhancement in a room-temperature vapor of alkali-metal atoms via a specific shaping of the atomic velocity distribution.

15.
Phys Rev Lett ; 109(26): 266407, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23368594

RESUMO

We investigate the cross interactions in a two-component polariton quantum fluid coherently driven by two independent pumping lasers tuned at different energies and momenta. We show that both the hysteresis cycles and the on-off threshold of one polariton signal can be entirely controlled by a second polariton fluid. Furthermore, we study the ultrafast switching dynamics of a driven polariton state, demonstrating the ability to control the polariton population with an external laser pulse, in less than a few picoseconds.

16.
Phys Rev Lett ; 107(14): 146402, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-22107218

RESUMO

The dynamics of optical switching in semiconductor microcavities in the strong coupling regime is studied by using time- and spatially resolved spectroscopy. The switching is triggered by polarized short pulses which create spin bullets of high polariton density. The spin packets travel with speeds of the order of 10(6) m/s due to the ballistic propagation and drift of exciton polaritons from high to low density areas. The speed is controlled by the angle of incidence of the excitation beams, which changes the polariton group velocity.

17.
Science ; 332(6034): 1167-70, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21636766

RESUMO

A quantum fluid passing an obstacle behaves differently from a classical one. When the flow is slow enough, the quantum gas enters a superfluid regime, and neither whirlpools nor waves form around the obstacle. For higher flow velocities, it has been predicted that the perturbation induced by the defect gives rise to the turbulent emission of quantized vortices and to the nucleation of solitons. Using an interacting Bose gas of exciton-polaritons in a semiconductor microcavity, we report the transition from superfluidity to the hydrodynamic formation of oblique dark solitons and vortex streets in the wake of a potential barrier. The direct observation of these topological excitations provides key information on the mechanisms of superflow and shows the potential of polariton condensates for quantum turbulence studies.

18.
Phys Rev Lett ; 105(21): 216403, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-21231328

RESUMO

A remarkable feature of exciton-polaritons is the strongly spin-dependent polariton-polariton interaction, which has been predicted to result in the formation of spin rings in real space [Shelykh, Phys. Rev. Lett. 100, 116401 (2008)]. Here we experimentally demonstrate the spin bistability of exciton polaritons in an InGaAs-based semiconductor microcavity under resonant optical pumping. We observe the formation of spin rings whose size can be finely controlled in a spatial scale down to the micrometer range, much smaller than the spot size. Demonstration of optically controlled spin patterns in semiconductors opens way to the realization of spin logic devices and spin memories.

19.
Phys Rev Lett ; 101(13): 133601, 2008 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-18851447

RESUMO

Using electromagnetically induced transparency in a cesium vapor, we demonstrate experimentally that the quantum state of a light beam can be mapped into the long-lived Zeeman coherences of an atomic ground state. Two noncommuting variables carried by light are simultaneously stored and subsequently read out, with no noise added. We compare the case where a tunable single sideband is stored independently of the other one to the case where the two symmetrical sidebands are stored using the same electromagnetically induced transparency window.

20.
Phys Rev Lett ; 98(10): 106401, 2007 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-17358552

RESUMO

We demonstrate a novel kind of polariton four wave mixing oscillation. Two pump polaritons scatter towards final states that emit two beams of equal intensity, separated both spatially and in polarization with respect to the pumps. The measurement of the intensity fluctuations of the emitted light demonstrates that the final states are strongly correlated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...