Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Antibiotics (Basel) ; 9(12)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33322049

RESUMO

Data on antimicrobial use (AMU) in heavy pig production (>150 kg) are limited. The aim of this study was to investigate the AMU in this production. Data from 2015 were collected for 143 fattening farms. The AMU was estimated through a treatment index per 100 days (TI100) using the defined daily dose animal for Italy (DDDAit). When possible, a comparison with the European Medicines Agency's defined daily doses for animals (DDDvet) was performed. The median TI100 was 10.7 (range, 0.2-49.5). Group treatments represented 94.6% of overall consumption. The AMU calculated using DDDAit and DDDvet were strongly correlated (ρ = 0.976; p < 0.001). The AMU was negatively correlated with injectables use (ρ = -0.46, p < 0.001) and positively correlated with oral products (ρ = 0.21, p = 0.014), premixes (ρ = 0.26, p = 0.002), and mortality (ρ = 0.18; p = 0.027). Farm size was negatively correlated with AMU (ρ = -0.29, p < 0.001). Smaller farms were more frequently above the median TI100 (odds ratio = 2.3, 95% confidence interval = 1.2-4.7), suggesting that they may have lower biosecurity and management standards. The results of this study should provide useful insights for the development of an Italian monitoring system.

2.
Res Vet Sci ; 121: 106-110, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30384140

RESUMO

Porcine epidemic diarrhoea virus (PEDV), belongs to the genus Alphacoronavirus in the family Coronaviridae and causes severe diarrhoea, vomiting, dehydration and high mortality in seronegative newborn piglets. Thus, a precise and rapid diagnosis of PEDV infection is important for the application of control measures to limit viral dissemination. In this investigation, a monoclonal antibodies (MAbs)-based competitive enzyme-linked immunosorbent assay (ELISA) for detecting antibodies against PEDV was developed and validated. The diagnostic performance of the test was evaluated by receiver operating characteristic (ROC) analysis using a panel of 829 known sera collected from different commercial pig farms, with or without a history of PED presence and from experimentally infected pigs. The competitive ELISA showed excellent diagnostic performance and discriminatory power with high sensitivity (Se) and specificity (Sp) values (Se = 96.5%, 95% IC 94.1-98.1; Sp = 98.2%, 95% IC 96.3-99.3). Moreover, this competitive ELISA method has other properties, such as high feasibility of testing sera without pre-treatment and automatic and instrument-mediated revealing, that makes it appropriate for large-scale screenings of affected pig farms in endemic regions or for monitoring plans in PEDV-free areas.


Assuntos
Infecções por Coronavirus/veterinária , Ensaio de Imunoadsorção Enzimática/veterinária , Vírus da Diarreia Epidêmica Suína/isolamento & purificação , Doenças dos Suínos/diagnóstico , Animais , Anticorpos Monoclonais/sangue , Anticorpos Antivirais/sangue , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/virologia , Ensaio de Imunoadsorção Enzimática/métodos , Sensibilidade e Especificidade , Suínos , Doenças dos Suínos/virologia
3.
Transbound Emerg Dis ; 65(6): 1935-1942, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30094946

RESUMO

Porcine Epidemic Diarrhoea Virus (PEDV) causes watery diarrhoea, dehydration, and a high mortality rate among suckling pigs. Recently, PEDV had a large negative economic impact on the swine industries in Asia and North America. In 2014, PEDV re-emerged in many European countries, but most countries only reported a few sporadic cases. Here, we report the epidemic wave that occurred in Italy from 2015 to 2017. During this time, PEDV was detected by real-time PCR in 438 farms located mainly in the high-density pig production area in Northern Italy. Most of the outbreaks were in farrow-to-finish, farrow-to-wean and finisher farms. Clinical signs were observed mainly in suckling and fattening animals, while mortality rates were higher in piglets, reaching 50%. A sequence analysis showed that a PEDV strain, similar to the OH851 S-INDEL strain isolated in the USA in January 2014, was responsible for the outbreaks in Italy in 2015 and 2016. However, from January 2017, a recombinant variant strain, containing a portion of the Swine Enteric Coronavirus in the S1 gene, spread and almost completely outcompeted the previous nonrecombinant strain. In total, 14.1% of the environmental swabs collected from trucks at slaughterhouses after animals were unloaded tested positive for PEDV before the trucks were cleaned and disinfected, and 46% remained positive after cleaning and disinfection processes were performed. Moreover, environmental swabs indicated that 17.3% of the empty trucks arriving at the farms to load animals were PEDV-positive. This study indicates that trucks can have an important role in the spread of PEDV in Italy.


Assuntos
Infecções por Coronavirus/veterinária , Surtos de Doenças/veterinária , Transmissão de Doença Infecciosa/veterinária , Doenças dos Suínos/transmissão , Meios de Transporte , Animais , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Diarreia/veterinária , Itália/epidemiologia , Vírus da Diarreia Epidêmica Suína/genética , Suínos , Doenças dos Suínos/epidemiologia , Desmame
4.
Vet Immunol Immunopathol ; 200: 32-39, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29776610

RESUMO

Porcine Reproductive and Respiratory Syndrome (PRRS) is an elusive model of host/virus relationship in which disease is determined by virus pathogenicity, pig breed susceptibility and phenotype, microbial infectious pressure and environmental conditions. Successful disease control in PRRS-endemic Countries corresponds to "stability", i.e. a condition with no clinical signs of PRRS in the breeding-herd population and no viremia in weaning-age pigs. The aim of this work was to compare the profile and time-course of humoral and cell-mediated immunity in stable and unstable herds, respectively. In particular, we investigated PRRS virus (PRRSV) in serum and group oral fluid samples by Real-time RT-PCR, PRRSV-specific IgA and IgG in oral fluids, serum IgG antibody and the cell-mediated response (PRRSV-specific release of interferon-gamma) in whole blood samples. These parameters were measured in order to identify possible discrepancies in the development and kinetics of the immune response against PRRSV. PRRS-free gilts got regularly infected after entering PRRS-stable and unstable farms. In an open cycle, unstable pig farm PRRSV infection could be demonstrated in all groups of pigs, including suckling piglets. Four main results should be highlighted: A) the precocity of the Ab response in group oral fluids was generally similar to that recorded in sera; B) circulation of PRRSV was consistently detected in all age groups in the unstable herds, as opposed to the stable ones; C) an early, balanced, IgA and IgG response in oral fluids was only observed in the stable herds; D) an early IFN-gamma response after PRRSV infection was often observed in stable herds, as opposed to the unstable ones. These were characterized by IFN-gamma responses in piglets, likely due to transfer of maternal immunity. Most important, the mucosal IgA response was associated with cessation of virus excretion in oral fluid samples of PRRS-unstable herds. The above findings indicate that a peculiar profile of immune response to PRRSV can be found in PRRS-stable herds. Therefore, the outlined immune parameters can represent a useful readout system to evaluate successful adaptation to PRRSV based on acclimatization of breeding animals and management of pig flow.


Assuntos
Imunidade Humoral/imunologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Animais , Feminino , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Interferon gama/imunologia , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Suínos , Viremia/imunologia , Viremia/veterinária , Eliminação de Partículas Virais
5.
BMC Vet Res ; 14(1): 10, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321027

RESUMO

BACKGROUND: Direct and indirect contact among animals and holdings are important in the spread of Brachyspira hyodysenteriae. The objective of this study was to investigate the role of slaughterhouse vehicles in spreading B. hyodysenteriae between unconnected farms. RESULTS: Multilocus sequence typing (MLST) and Multiple Locus Variable number tandem repeat Analysis (MLVA) were used to characterize B. hyodysenteriae strains isolated from trucks. Before cleaning, 976 batches of finishing pigs transported by 174 trucks from 540 herds were sampled. After cleaning, 763 of the 976 batches were also sampled. Sixty-one of 976 and 4 of 763 environmental swabs collected from trucks before and after cleaning and disinfection operations, respectively, were positive for B. hyodysenteriae. The 65 isolates in this study originated from 48 farms. Trucks were classified into five categories based on the number of visited farms as follows: category 1: 1-5 farms, category 2: 6-10 farms, category 3: 11-15 farms, category 4: 16-20 farms, category 5: >21 farms. Although the largest number of vehicles examined belonged to category 1, the highest percentage of vehicles positive for B. hyodysenteriae was observed in categories 3, 4 and 5. Specifically, 90.9% of trucks belonging to category 5 were positive for B. hyodysenteriae, followed by categories 4 and 3 with 85.7% and 83.3%, respectively. The results of MLST and MLVA suggest that trucks transporting pigs from a high number of farms also play a critical role in spreading different B. hyodysenteriae genetic profiles. STVT 83-3, which seems to be the current dominant type in Italy, was identified in 56.25% of genotyped isolates. The genetic diversity of isolated strains from trucks was high, particularly, in truck categories 3, 4 and 5. This result confirmed that MLST and MLVA can support the study of epidemiological links between different B. hyodysenteriae farm strains. CONCLUSIONS: This study highlights the potential role of shipments in B. hyodysenteriae spread. Moreover, it emphasizes the importance of strict vehicle hygiene practices for biosecurity programmes.


Assuntos
Brachyspira hyodysenteriae/isolamento & purificação , Infecções por Bactérias Gram-Negativas/veterinária , Doenças dos Suínos/epidemiologia , Meios de Transporte , Matadouros , Animais , Brachyspira hyodysenteriae/genética , Desinfecção , Fazendas , Infecções por Bactérias Gram-Negativas/epidemiologia , Infecções por Bactérias Gram-Negativas/transmissão , Itália/epidemiologia , Repetições Minissatélites , Epidemiologia Molecular , Tipagem de Sequências Multilocus , Suínos , Doenças dos Suínos/microbiologia , Doenças dos Suínos/transmissão
6.
Front Microbiol ; 7: 2009, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28018330

RESUMO

The porcine epidemic diarrhea virus (PEDV) causes an acute and highly contagious enteric disease characterized by severe enteritis, vomiting, watery diarrhea, and a high mortality rate in seronegative neonatal piglets. In the last few years, PED had a large economic impact on the swine industries in Asia and the US, and in 2014, the PEDV also re-emerged in Europe. Two main PEDV variants circulate worldwide but only the S INDEL variant, considered a mild strain, is spreading in Europe. To gain insights into the pathogenicity of this variant, its viral load and temporal shedding pattern were evaluated in piglets from infected farms. Quantitative real-time PCR (qPCR) targeting the spike gene, was validated according to the minimum information for quantitative real-time PCR experiments guidelines. The qPCR was applied to longitudinal studies conducted in four swine farms naturally infected with the PEDV S INDEL variant. Clinical data, fecal swabs, and blood samples were collected from 103 piglets at 15-30-day intervals for 2-5 months. On all four farms, diarrhea was observed in sows during gestation and in farrowing units, and the mortality rates of piglets were 18, 25, 30, and 35%. Different clinical pictures (0-50% of diarrhea positivity), viral titer levels (mean 5.3-7.2 log10 genome copies/mL), and antibody conditions (30-80% of positivity) were registered among sows on the four farms. The percentage of qPCR positive piglets varied greatly from the beginning (63-100%) to the end (0%) of the infection course. Clinical signs were present in 96% of the qPCR positive animals. Viral loads ranged from 8.5 log10 to 4 log10 genome copies/mL in suckling pigs at 3-6 days of age and were not statistically different among farms, despite the different patterns observed in sows. After 2-3 weeks, only a few piglets still showed detectable viral levels and clinical signs, and they developed antibody responses. Moreover, co-infections with other pathogens and biosecurity procedures limiting the circulation of the virus could have influenced the severity of PED infection. QPCR and clinical data were useful in understanding the dynamics of PEDV infections and, therefore, in implementing appropriate control measures.

7.
J Vet Diagn Invest ; 28(5): 550-4, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27400956

RESUMO

Reproductive failure in sows is one of the most important factors affecting pig breeding. Many reproductive disorders are linked to both environmental factors and infectious agents. The goal of our study was to determine the presence of pathogens that are known to cause abortion, considering a set of conditioning factors, such as seasonality and pregnancy period. A large number of aborted fetuses (1,625 fetuses from 140 farms) from a high-density breeding area in northern Italy was analyzed for a period of 3 years. The pigs were diagnosed based on direct (culture, PCR) or indirect (enzyme-linked immunosorbent assay) evidence. An infectious etiologic agent was found in 323 of 549 cases of abortion (58.8%). These included viral agents (Porcine circovirus-2, 138/323; Porcine reproductive and respiratory syndrome virus, 108/323; porcine parvovirus, 20/323; pseudorabies virus, 6/323; and Encephalomyocarditis virus, 3/323) and bacteria (Escherichia coli, 64/323; Streptococcus sp., 63/323; Staphylococcus sp., 5/323; Pasteurella sp., 3/323; Shigella sp., 1/323; and Yersinia sp., 1/323). This study describes the prevalence of infectious agents involved in reproductive failure in a high-density swine population. The data can be useful to swine breeders, practitioners, and medical specialists in monitoring animal health and in supervising the breeding process.


Assuntos
Aborto Animal/epidemiologia , Criação de Animais Domésticos , Doenças dos Suínos/epidemiologia , Feto Abortado/microbiologia , Aborto Animal/microbiologia , Aborto Animal/patologia , Animais , Anticorpos Antibacterianos/sangue , Circovirus/genética , Circovirus/isolamento & purificação , Ensaio de Imunoadsorção Enzimática/veterinária , Feminino , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/isolamento & purificação , Herpesvirus Suídeo 1/genética , Herpesvirus Suídeo 1/isolamento & purificação , Itália/epidemiologia , Reação em Cadeia da Polimerase/veterinária , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/isolamento & purificação , Gravidez , Estudos Retrospectivos , Suínos , Doenças dos Suínos/microbiologia , Doenças dos Suínos/patologia
8.
Vet Res Commun ; 40(2): 81-8, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27142053

RESUMO

In this study, we investigated the dynamics of Mycoplasma hyopneumoniae infections in 66 pig farms, with different production systems (one-, two-, and three-site systems), and considered different risk factors. Serological assay was used to detect serum antibodies against M. hyopneumoniae and real time polymerase chain reaction (RT-PCR) was performed to detect M. hyopneumoniae DNA in tracheobronchial swabs. Results demonstrated that M. hyopneumoniae infection status was predominantly influenced by the age of the animals and the type of production system. Infection rates were higher in older animals and the prevalence was higher in the one- and two-site systems than in the three-site systems. Dynamics of infection by RT-PCR showed that earlier M. hyopneumoniae infection on one-site farms occurs earlier, while on two- and three-site farms occurs later but spreads faster, suggesting that contact between animals of different age favors the transmission.


Assuntos
Criação de Animais Domésticos , Pneumonia Suína Micoplasmática/imunologia , Pneumonia Suína Micoplasmática/patologia , Pneumonia Suína Micoplasmática/transmissão , Fatores Etários , Animais , Anticorpos Antibacterianos/sangue , Mycoplasma hyopneumoniae/genética , Mycoplasma hyopneumoniae/imunologia , Pneumonia Suína Micoplasmática/sangue , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Risco , Soroconversão , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...