Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 302(Pt A): 114015, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34731710

RESUMO

Polymer flooding is an enhanced oil recovery technique to extract the large portion of leftover subsurface oil following conventional extraction methods. In the flooding process, a long-chain polymer, such as partially hydrolyzed polyacrylamide (HPAM), is added to the displacing fluid to increase the mobility and extraction of the oil phase. Nevertheless, the challenge of managing produced water from polymer flooding operations is high because residual HPAM results in significantly high viscosity and organic content in the stream. Commonly used methods for produced water treatment, such as gravity settling and flotation, cannot be applied to obtain a purified stream efficiently, while innovative techniques are not yet feasible in practical operations. In this work, a simple method of polymer precipitation prompted by divalent ions is evaluated, optimized, and compared to membrane ultrafiltration. The physico-chemical properties of the HPAM are investigated and polymer precipitation tests are conducted by varying the main operational parameters, including pH, salinity, temperature, calcium and/or magnesium concentration, and polymer concentration. Response surface developed by central composite design method is used to optimize the process and identify the correct dosage of divalent cations coagulants and pH, the two main factors promoting HPAM separation. The removal of HPAM is well-described and maximized (>85%) by the model, which is also validated on three synthetic samples representing real wastewaters from polymer flooding applications. Optimized ultrafiltration, using ceramic membranes with surface pore size of 15 kDa, also shows the ability to remove HPAM effectively from water, but the precipitation method seems to be more versatile and easier to apply. The two processes, precipitation and ultrafiltration, may potentially be used in sequence as they complement each other in several ways.


Assuntos
Polímeros , Purificação da Água , Peso Molecular , Águas Residuárias
2.
Environ Int ; 152: 106498, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33730633

RESUMO

Forward osmosis (FO) is a promising technology for the treatment of complex water and wastewater streams. Studies around FO are focusing on identifying potential applications and on overcoming its technological limitations. Another important aspect to be addressed is the environmental sustainability of FO. With the aim to partially fill this gap, this study presents a life cycle analysis (LCA) of a potential full-scale FO system. From a purely environmental standpoint, results suggest that significantly higher impacts would be associated with the deployment of thermolytic, organic, and fertilizer-based draw solutes, compared to more accessible inorganic compounds. The influent draw osmotic pressure in FO influences the design of the real-scale filtration system and in turn its environmental sustainability. In systems combining FO with a pressure-driven membrane process to recover the draw solute (reverse osmosis or nanofiltration), the environmental sustainability is governed by a trade-off between the energy required by the regeneration step and the draw solution management. With the deployment of environmentally sustainable draw solutes (e.g., NaCl, Na2SO4), the impacts of the FO-based coupled system are almost completely associated to the energy required to run the downstream recovery step. On the contrary, the management of the draw solution, i.e., its replacement and the required additions due to potential losses during the filtration cycles, plays a dominant role in the environmental burdens associated with FO-based systems exploiting less sustainable draw solute, such as MgCl2.


Assuntos
Purificação da Água , Membranas Artificiais , Osmose , Soluções , Águas Residuárias
3.
Water Res ; 191: 116801, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33433333

RESUMO

This study evaluates 9 biocides as disinfectants against microbiological contaminants, specifically, microalgae and E. coli, while assessing their safety and environmental impact. Specifically, the biocide effectiveness and corresponding generation of halogenated compounds is assessed in a real contaminated groundwater receiving acidic leachate from a phosphogypsum landfill. Oxidizing agents are investigated, namely, hypochlorite, peracetic acid, hydrogen peroxide, chlorine dioxide, and persulfate, together with electrophilic biocides, namely, 2,2-dibromo-2-cyanoacetamide and (chloro-) methylisothiazolinone. In addition, a novel disinfection approach is assessed by applying reducing agents, namely, sulfite and metabisulfite. The disinfection mechanism and the formation of halogenated compounds are discussed on the basis of the mode of action and of the molecular structure of each biocide. Overall, the results show that an optimal dosage of the biocides exists to minimize the formation of harmful compounds in water while maximizing disinfection, especially for hypochlorite and peracetic acid. This dosage was between 0.03 mM and 0.15 mM depending on the biocide. The safety of electrophilic biocides is found to be associated to their molecular structure rather than their mode of action. Hydrogen peroxide, MIT, and metabisulfite are the most promising disinfectants in the contaminated groundwater matrix of interest since no halogenated by-products are detected upon successful disinfection, while they are able to completely inactivate bacteria and remove over the 80% of microalgae in the selected matrix. In particular, metabisulfite represents a highly promising biocide, owing to its low environmental and health impacts, as well as economic feasibility (estimated reagent cost ~0.002 € per cubic meter of treated water).


Assuntos
Desinfetantes , Poluentes Químicos da Água , Bactérias , Desinfecção , Escherichia coli , Estudos de Viabilidade
4.
Environ Sci Technol ; 54(20): 13249-13256, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32970427

RESUMO

Water filtration membranes produced sustainably through microbial cellulose production can have filtration properties altered through facile chemical treatments. Microbial cellulose is an effective membrane filtration medium, and pristine microbial membranes can serve as ultrafiltration membranes with a permeability of 143 L m-2h-1bar-1 and a particle size cut off of 35 nm. As living biofilms, these membranes consist of microbial cellulose, bacteria, and extracellular polymers. Thus, additional biofilm components may reduce the intrinsic permeability of the cellulose. Here, microbial membranes were treated with hydrogen peroxide (H2O2) and sodium hypochlorite (NaOCl, liquid bleach) to remove impurities present in microbial cellulose and increase membrane permeability. For example, permeability increased from 143 to 257 L m-2h-1bar-1 with treatment by 0.3% H2O2 for 12 min. The membranes were also treated with sodium hydroxide (NaOH) to increase membrane selectivity, and the particle size cutoff was reduced from 35 to 10 nm post-treatment with 0.8% NaOH for 20 min. Scanning electron microscopy, Fourier-transform infrared spectroscopy, thermogravimetric analysis, contact angle goniometry, and X-ray diffraction were used to characterize the physical and chemical properties of the membrane matrix. Facile chemical treatments provide a significant degree of flexibility to tailor microbial membranes to meet specific needs. Microbial membrane production is inherently accessible, and this study furthers that accessibility by utilizing only readily available components to treat microbial membranes and expand their potential applications.


Assuntos
Celulose , Ultrafiltração , Peróxido de Hidrogênio , Membranas Artificiais , Permeabilidade
5.
Environ Sci Technol Lett ; 7(3): 213-218, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32175443

RESUMO

As demand for clean water increases, there is a growing need for effective sustainable water treatment systems. We used the symbiotic culture of bacteria and yeast (SCOBY) that forms while brewing kombucha tea as a living water filtration membrane (LFM). The LFMs function as ultrafiltration membranes with a permeability of 135 ± 25 L m-2 h-1 bar-1 and a 90% rejection of 30 nm nanoparticles. Because they contain living microorganisms that produce cellulose fibers, the surface of an LFM heals after a puncture or incision. Following punctures or incisions, membrane permeability, after a rapid increase postpuncture, returns to 110-250% of the original flux after 10 days in a growth solution. Additionally, LFMs may be manufactured using readily available materials, increasing membrane production accessibility.

6.
Sci Rep ; 9(1): 14964, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31628407

RESUMO

The treatment of produced waters (by-products of oil and gas extraction) with the innovative process of membrane distillation is challenging, because these highly saline streams contain high concentrations of organic compounds and hydrocarbons that cause membrane wetting and impairment of performance. To design the most compact treatment scheme and with the aim of obtaining an easier management of produced water for reuse purposes, Fenton oxidation is here investigated as a feed pre-treatment that may produce an effluent easily handled by membrane distillation. In high-recovery membrane distillation tests, we systematically investigate the detrimental effects of individual contaminants in a synthetic produced water mimicking the composition of a real sample. The recovery rate depends strongly on the initial salinity, which eventually causes scaling and pore blocking. Surfactants are found to be mainly responsible for membrane wetting, but volatile and hydrophobic organics also spoil the quality of the product water. A Fenton oxidation pre-treatment is thus performed to degrade the target organics, with the aim of enhancing the effectiveness of the following membrane distillation and to improve the quality of the final product. The combined oxidation-membrane distillation scheme has both advantages and limitations, which need to be carefully evaluated and further investigated.

7.
Membranes (Basel) ; 9(5)2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31064140

RESUMO

The design of a hybrid forward osmosis-nanofiltration (FO-NF) system for the extraction of high-quality water from wastewater is presented here. Simulations were performed based on experimental results obtained in a previous study using real wastewater as the feed solution. A sensitivity analysis, conducted to evaluate the influence of different process parameters, showed that an optimum configuration can be designed with (i) an influent draw solution osmotic pressure equal to 15 bar and (ii) a ratio of influent draw solution to feed solution flow rate equal to 1.5:1. With this configuration, the simulations suggested that the overall FO-NF system can achieve up to 85% water recovery using Na2SO4 or MgCl2 as the draw solute. The modular configuration and the size of the NF stage, accommodating approximately 7000 m2 of active membrane area, was a function of the properties of the membranes selected to separate the draw solutes and water, while detailed simulations indicated that the size of the FO unit might be reduced by adopting a counter-current configuration. Experimental tests with samples of the relevant wastewater showed that Cl-- and Mg2+-based draw solutes would be associated with larger membrane fouling, possibly due to their interaction with the other substances present in the feed solution. However, the results suggest that fouling would not significantly decrease the performance of the designed system. This study contributes to the further evaluation and potential implementation of FO in water reuse systems.

8.
Water Res ; 153: 134-143, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30708192

RESUMO

This study evaluates a treatment system centered on forward osmosis (FO) to extract high-quality water from real brackish groundwater and wastewater. The groundwater had salinity of 4 g/L, while the wastewater sample consisted of a secondary effluent. These feed solutions were treated first in a FO step, achieving a recovery of >60%. Subsequently, the diluted draw solutions were subject to a nanofiltration (NF) step to regenerate their original osmotic pressure and to simultaneously collect a final permeate product. Magnesium chloride and sodium sulfate were both suitable draw solutes for this application. MgCl2 had a larger specific reverse salt flux and induced a more pronounced fouling-related flux decline with groundwater samples. Na2SO4 was re-concentrated with a higher permeability NF membrane but may require the use of anti-scalants. The average fluxes obtained in high-recovery batch FO were between 5 and 11 L m-2h-1 with an initial bulk draw osmotic pressure in the range of 12-15 bar. Relatively low flux decline was observed in fouling experiments with both samples, while physical cleaning proved promising to recover the related loss in productivity. The final product waters were all of very high quality, suggesting the potential of this coupled system for water reuse and desalination. Some challenges related to the relatively low water flux in the FO step, as well as the loss of draw solutes and the gradual change in composition of the draw solution, need further analysis to establish the technical and economic feasibility of the system.


Assuntos
Água Subterrânea , Purificação da Água , Membranas Artificiais , Osmose , Águas Residuárias
9.
Environ Sci Pollut Res Int ; 25(25): 25294-25305, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29946838

RESUMO

This study evaluates nanofiltration as a feasible process to reach low concentrations of chromium in drinking water and provides means for the selection of the most suitable membrane based on the specific treatment needs. Chromium removal is concerning since new stringent limits (10 µg/L) for hexavalent Cr concentration in potable water were recently adopted in various countries. Three commercial nanofiltration membranes were tested against this threshold value: two membranes made of semi-aromatic polyamide and the third having a sulfonated polyethersulfone asymmetric film as the selective layer. The rejection observed as a function of chemical composition in the feed solution suggests that electrostatic effect is an important mechanism of chromium(VI) removal for the membranes with higher surface charge and lower film density. The performance of such membranes is strongly affected by the presence of salts, especially divalent cations, which reduce both Cr(VI) rejection and the permeate flux. The removal of Cr(VI) by denser membranes is dominated by solution-diffusion and is not influenced by feed ionic strength. The exposure of membranes to high chromium concentrations and to hypochlorite, typically employed as an oxidizing agent in water treatment plants, was also investigated. An analysis of the operational membrane life is thus discussed, based on the loss in performance due to active film degradation. All three membranes showed adequate rejection of chromium from tap and well water of diverse chemical composition, suggesting that nanofiltration is an effective process to remove chromium for the production of safe drinking water. However, membranes with different properties should be adopted depending on specific feed water composition and on the productivity required from the system. A final analysis is presented to help with the choice of the most suitable nanofiltration membrane based on initial and target Cr(VI) concentration in feed and product water, respectively.


Assuntos
Cromo , Água Potável , Filtração/métodos , Nylons/química , Polímeros/química , Sulfonas/química , Poluentes Químicos da Água , Purificação da Água/métodos , Cromo/análise , Água Potável/química , Água Potável/normas , Ácido Hipocloroso , Íons , Membranas Artificiais , Sais , Eletricidade Estática , Poluentes Químicos da Água/análise , Abastecimento de Água
10.
ACS Omega ; 3(8): 9407-9418, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459074

RESUMO

The complete removal of biorecalcitrant xenobiotics, including most notably the pharmaceutical pollutants, by advanced oxidation processes is often difficult to be reached in urban or industrial wastewater because of the high concentration of organic and inorganic scavengers that compete with the xenobiotics for the oxidizing species. This work investigates a coupled treatment train in which wastewater effluents are pretreated with a negatively charged loose nanofiltration (NF) membrane (HydraCoRe70, made up of sulfonated polyethersulfone) to enhance the removal of xenobiotics with the thermal Fenton process. Carbamazepine (CBZ), a drug prescribed mainly for epilepsy treatment, is used here as a model xenobiotic. After optimizing the conditions for separation and degradation, the NF-Fenton approach was applied to both synthetic wastewater and real samples to assess the overall efficiency of CBZ removal. The Fenton degradation of CBZ was drastically enhanced in nanofiltered samples, thanks to the removal by the membrane of nearly all organic matter that would otherwise consume the reactive oxidizing species (e.g., the hydroxyl radical). On the basis of a preliminary treatment cost analysis, it can be concluded that the combined process is potentially applicable to the treatment of several kinds of wastewaters (e.g., industrial ones) to favor the removal of biorecalcitrant contaminants. Key cost savings of NF-Fenton concern the lower amounts of Fenton reagents needed to degrade CBZ and (even more importantly) the decreased levels of acids and bases for pH adjustment before and after the oxidative process because of the lower buffer capacity of the NF permeate compared to feed wastewater, after the removal by the NF of many inorganic ions and most organic carbon.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...