Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurol Sci ; 39(2): 275-285, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29101592

RESUMO

Neuroglobin (Ngb) is expressed in the central and peripheral nervous system, cerebrospinal fluid, retina, and endocrine tissues where it is involved in binding O2 and other gasotransmitters. Several studies have highlighted its endogenous neuroprotective function. Huntington's disease (HD), a dominant hereditary disease, is characterized by the gradual loss of neurons in discrete areas of the central nervous system. We analyzed the expression of Ngb in the brain tissue of a mouse model of HD, in order to define the role of Ngb with respect to individual cell type vulnerability in HD and to gender and age of mice. Our results showed different expressions of Ngb among neurons of a specific region and between different brain regions. We evidenced a decreased intensity of Ngb at 13 weeks of age, compared to 7 weeks of age. The double immunofluorescence and fluorescence resonance energy transfer (FRET) experiments showed that the co-localization between Ngb and huntingtin at the subcellular level was not close enough to account for a direct interaction. We also observed a different expression of Ngb in the striatum, depending on the sex and age of animals. These findings provide the first experimental evidence for an adaptive response of Ngb in HD, suggesting that Ngb may exert neuroprotective effects in HD beyond its role in reducing sensitivity to oxidative stress.


Assuntos
Corpo Estriado/metabolismo , Regulação da Expressão Gênica/genética , Globinas/metabolismo , Doença de Huntington/patologia , Proteínas do Tecido Nervoso/metabolismo , Fatores de Ribosilação do ADP , Animais , Toxinas Bacterianas , Linhagem Celular Tumoral , Colinesterases/metabolismo , Corpo Estriado/patologia , Modelos Animais de Doenças , Feminino , Transferência Ressonante de Energia de Fluorescência , Proteína Huntingtina/genética , Doença de Huntington/genética , Masculino , Camundongos , Camundongos Transgênicos , Mutação/genética , Neuroglobina , Neurônios/metabolismo , Parvalbuminas/metabolismo , Fatores Sexuais , Fatores de Tempo
2.
Neuroscience ; 152(3): 734-40, 2008 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-18313855

RESUMO

An involvement of one particular neurotrophin, namely, the brain-derived neurotrophic factor (BDNF), has been demonstrated in the pathophysiology Huntington's disease. Type-1 cannabinoid (CB1) receptor has been postulated to upregulate BDNF gene transcription. To better understand the relationship between CB1 and BDNF levels in a situation where the striatum is degenerating, we studied, by dual label immunofluorescence, the distribution of CB1 and BDNF in cortical neurons projecting to the striatum in our rat quinolinic acid model of striatal excitotoxicity. We completed our study with quantitative analyses of BDNF protein levels and CB1 binding activity in the cortex. We show that, 2 weeks post lesion, cortical neurons contain more BDNF compared with controls and to earlier time points. Such BDNF up-regulation coincides with a higher binding activity and an increased protein expression of CB1. We suggest that after excitotoxic lesions, CB1 might, at least transiently, upregulate BDNF in the attempt to rescue striatal neurons from degeneration.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Córtex Cerebral/metabolismo , Corpo Estriado/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Animais , Comunicação Celular/fisiologia , Sobrevivência Celular/fisiologia , Córtex Cerebral/fisiopatologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/fisiopatologia , Citoproteção/fisiologia , Modelos Animais de Doenças , Imunofluorescência , Doença de Huntington/metabolismo , Doença de Huntington/fisiopatologia , Masculino , Degeneração Neural/induzido quimicamente , Degeneração Neural/metabolismo , Degeneração Neural/fisiopatologia , Neurotoxinas , Ligação Proteica , Ácido Quinolínico , Ratos , Ratos Wistar , Fatores de Tempo , Regulação para Cima/fisiologia
3.
Br J Pharmacol ; 153(5): 1022-9, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18223675

RESUMO

BACKGROUND AND PURPOSE: Reactive oxygen species (ROS) have been postulated to play a crucial role in the pathogenesis of ischaemia-reperfusion injury. Among these, hydrogen peroxide (H(2)O(2)) is known to be a toxic compound responsible for free-radical-dependent neuronal damage. In recent years, however, the 'bad reputation' of H(2)O(2) and other ROS molecules has changed. The aim of this study was to assess the protective role of H(2)O(2) and modification in its endogenous production on the electrophysiological and morphological changes induced by oxygen/glucose deprivation (OGD) on CA1 hippocampal neurons. EXPERIMENTAL APPROACH: Neuroprotective effects of exogenous and endogenous H(2)O(2) were determined using extracellular electrophysiological recordings of field excitatory post synaptic potentials (fEPSPs) and morphological studies in a hippocampal slice preparation. In vitro OGD was delivered by switching to an artificial cerebrospinal fluid solution with no glucose and with oxygen replaced by nitrogen. KEY RESULTS: Neuroprotection against in vitro OGD was observed in slices treated with H(2)O(2) (3 mM). The rescuing action of H(2)O(2) was mediated by catalase as pre-treatment with the catalase inhibitor 3-amino-1,2,4-triazole blocked this effect. More interestingly, we showed that an increase of the endogenous levels of H(2)O(2), due to a combination of an inhibitor of the glutathione peroxidase enzyme and addition of Cu,Zn-superoxide dismutase in the tissue bath, prevented the OGD-induced irreversible depression of fEPSPs. CONCLUSIONS AND IMPLICATIONS: Taken together, our results suggest new possible strategies to lessen the damage produced by a transient brain ischaemia by increasing the endogenous tissue level of H(2)O(2).


Assuntos
Isquemia Encefálica/tratamento farmacológico , Peróxido de Hidrogênio/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Isquemia Encefálica/fisiopatologia , Catalase/efeitos dos fármacos , Catalase/metabolismo , Modelos Animais de Doenças , Eletrofisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Peróxido de Hidrogênio/metabolismo , Técnicas In Vitro , Masculino , Fármacos Neuroprotetores/metabolismo , Células Piramidais/efeitos dos fármacos , Células Piramidais/patologia , Ratos , Ratos Wistar
4.
Synapse ; 53(3): 159-67, 2004 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15236348

RESUMO

Several lines of evidence indicate that cannabinoids, among other functions, are involved in motor control. Although cannabinoid receptors (CB(1)) mRNA has been observed in medium-sized spiny neurons of the striatum, a description of the precise localization of CB(1) at a protein level among striatal cells is still lacking. Therefore, we performed immunohistochemical studies with light and confocal microscopy to identify neuronal subpopulations that express CB(1) and to assess the distribution of the receptor within these neurons. In our single label light microscopy study, CB(1) was observed in most medium-sized neurons of the caudate-putamen. However, CB(1) was also present in large-sized neurons scattered throughout the striatum. Our dual-label study showed that 89.3% of projection neurons in matrix contain CB(1), and that 56.4% of projection neurons in patch are labeled for CB(1). To investigate the presence of CB(1) among the different subclasses of striatal interneurons we performed a double-labeling study matching CB(1) and each of the striatal interneuron markers, namely, choline acetyl-transferase, parvalbumin, calretinin, and nitric oxide synthase. Our double-label study showed that most parvalbumin immunoreactive interneurons (86.5%), more than one-third (39.2%) of cholinergic interneurons, and about one-third (30.4%) of the NOS-positive neurons are labeled for CB(1). Calretinin-immunolabeled neurons were devoid of CB(1).


Assuntos
Moduladores de Receptores de Canabinoides/metabolismo , Neostriado/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Animais , Calbindina 2 , Colina O-Acetiltransferase/metabolismo , Imuno-Histoquímica , Interneurônios/citologia , Interneurônios/metabolismo , Masculino , Microscopia Confocal , Neostriado/citologia , Vias Neurais/citologia , Vias Neurais/metabolismo , Óxido Nítrico Sintase/metabolismo , Parvalbuminas/metabolismo , Ratos , Ratos Wistar , Proteína G de Ligação ao Cálcio S100/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...